검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study presents a cost-effective wet chemical coating process for fabricating a boron nitride (BN) interphase on silicon carbide (SiC) fibers, increasing the oxidation resistance and performance of SiCf/SiC ceramic matrix composites. Using urea as a precursor, optimal nitriding conditions were determined by adjusting the composition, concentration, and immersion time. X-ray diffraction analysis revealed distinct BN phase formation at 1300°C and 1500°C, while a mixture of BN and B2O3 was observed at 1200°C. HF treatment improved coating uniformity by removing SiO2 layers formed during the de-sizing process. Optimization of the boric acid-to-urea molar ratio resulted in a uniform, 130-nm-thick BN layer. This study demonstrates that the wet coating process offers a viable and economical alternative to chemical vapor deposition for fabricating high-performance BN interphases in SiCf/SiC composites that are suitable for high-temperature applications.
        4,000원
        2.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, an analytical model is developed for electrical conductivity of nanocomposites, particularly polymer/carbon nanotubes nanocomposites. This model considers the effects of aspect ratio, concentration, waviness, conductivity and percolation threshold of nanoparticles, interphase thickness, wettability between polymer and filler, tunneling distance between nanoparticles and network fraction on the conductivity. The developed model is confirmed by experimental results and parametric studies. The calculations show good agreement with the experimental data of different samples. The concentration and aspect ratio of nanoparticles directly control the conductivity. Moreover, a smaller distance between nanoparticles increases the conductivity based on the tunneling mechanism. A thick interphase also causes an increased conductivity, because the interphase regions participate in the networks and enhance the effectiveness of nanoparticles.
        4,200원
        3.
        2016.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a multiscale method for solving a thermoelasticity problem for interphase in the polymeric nanocomposites is developed. Molecular dynamics simulation and finite element analysis were numerically combined to describe the geometrical boundaries and the local mechanical response of the interfacial region where the polymer networks were highly interacted with the nanoparticle surface. Also, the micrmechanical thermoelasticity equations were applied to the obtained equivalent continuum unit to compute the growth of interphase thickness according to the size of nanoparticles, as well as the thermal phase transition behavior at a wide range of temperatures. Accordingly, the equivalent continuum model obtained from the multiscale analysis provides a meaningful description of the thermoelastic behavior of interphase as well as its nanoparticle size effect on thermoelasticity at both below and above the glass transition temperature.
        4,000원
        4.
        2012.06 구독 인증기관·개인회원 무료
        Polycystic ovarian syndrome (PCOS) is a heterogeneous syndrome associated with follicle growth arrest, dysregulated sex hormone profile, hyperthecosis and insulin resistance. Chemerin, a novel adipokine, is associated with obesity and metabolic syndrome. Although obese women and in PCOS subjects have elevated plasma chemerin levels, whether and how chemerin is involved in the regulation of follicular growth/steroidogenesis and pathogenesis of PCOS is unknown. Our objective is to better understand the complex regulatory mechanisms involved in the control of these processes and gain insights in their dysregulation in the pathogenesis of PCOS. We hypothesize that: (a) hyperandrogenism induces small and medium antral follicle growth arrest and ovarian structural changes, resulting from granulosa cell and oocyte apoptosis and theca cell survival, and (b) chemerin regulates follicular growth and steroidogenesis and contributes to the pathogenesis of PCOS. Using immature rats (day 13~15 for follicle culture and day 21~24 for granulosa cells culture) and a chronically androgenized rat model [dihydrotestosterone (DHT); 83 μg daily, day 21~105] which recapitulates the reproductive and metabolic phenotypes of human PCOS, we have examined the granulosa cell expression patterns of chemerin and its receptor CMKLR1 and their steroidogenic and follicle growth capability. DHT treatment resulted in decreased follicle numbers in preantral to preovulatory stages and absence of corpus luteum, but increased numbers of condensed atypical follicles. Atypical follicles, constituted predominantly of theca cells, exhibited high expression of calpain and down‐regulation of the cytoskeletal protein substrates vimentin, fodrin and β‐tubulin. Granulosa cell aromatase expression was significantly down‐regulated, a response accompanied by increased activated caspase‐3 content and DNA fragmentation. While PTEN levels were considerably higher in granulosa cells in the PCOS rats than controls, phospho‐Akt (Ser473) content was lower. In addition, DHT also activated granulosa cell caspase‐3, decreased XIAP, PARP and phospho‐Akt contents and induced apoptosis in vitro, responses that could be attenuated by forced expression of XIAP. These findings are consistent with our hypothesis that dysregulated follicular growth in PCOS is associated with changes in follicular growth dynamics and follicle cell fate, a consequence of dysregulated interactions of pro‐survival (p‐Akt, XIAP, PARP) and proapoptotic (calpain, PTEN, caspase‐3) modulators in a cell‐specific manner. Chemerin and CMKLR1 were expressed in granulosa cells and negatively regulated by gonadotropin in vivo and in vitro. Serum and ovarian chemerin levels in DHT‐treated rats were elevated, and associated with arrested early antral follicular growth, remodeling of the follicle wall and decreased expression of p450 side‐chain cleavage enzyme (p450- scc), aromatase and hydroxysteroid dehydrogenases. Recombinant chemerin inhibited FSH ‐ induced estradiol secretion in granulosa cells from DHT‐treated rats in vitro. Chemerin also suppressed basal and FSH‐ and GDF9‐induced follicle growth and estradiol/ progesterone production in preantral follicle cultures. Moreover, chemerin suppressed FSH‐induced p450scc/aromatase expression and progesterone/estradiol secretion in immature rat granulosa cells in vitro. These studies demonstrate that chemerin is a novel negative regulator in FSH‐induced follicular growth and steroidogenesis and support the notion that the dysregulation of chemerin expression and function contributes to pathogenesis of PCOS. Our observations also suggest that this chronically androgenized rat model may be useful not only for studies on the long term effects of androgen on folliculogenesis, but also on the pathophysiology of PCOS. * This work was supported by grants from the Canadian Institutes of Health Research (CIHR; MOP‐119381) and the World Class University (WCU) program through the Ministry of Education, Science and Technology funded by the National Research Foundation of Korea (R31‐10056).
        5.
        2010.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the effect of filler content (wt%), presence of interphase and agglomerates on the effective Young's modulus of polypropylene (PP) based nanocomposites reinforced with exfoliated graphite nanoplatelets (xGnPTM) and carbon nanotubes (CNTs). The Young's modulus of the composites is determined using tensile testing based on ASTM D638. The reinforcement/polymer interphase is characterized in terms of width and mechanical properties using atomic force microscopy which is also used to investigate the presence and size of agglomerates. It is found that the interphase has an average width of ~30 nm and modulus in the range of 5 to 12 GPa. The Halpin-Tsai micromechanical model is modified to account for the effect of interphase and filler agglomerates and the model predictions for the effective modulus of the composites are compared to the experimental data. The presented results highlight the need of considering various experimentally observed filler characteristics such as agglomerate size and aspect ratio and presence and properties of interphase in the micromechanical models in order to develop better design tools to fabricate multifunctional polymer nanocomposites with engineered properties.
        4,000원