항만 내 선박과 부두의 사고를 예방하기 위하여 통항 및 접안 안전성 평가를 통하여 안전한 부두가 건설되어 관리하고 있으나, 선 박의 접안 및 계류 과정에서 선박이 부두에 충돌하거나 로프로 인한 인명사고의 발생 등 예측할 수 없는 사고들이 종종 발생한다. 자동계류장 치는 선박의 신속하고 안전한 계류를 위한 자동화된 시스템으로 로봇 매니퓰레이터와 흡착 패드로 구성된 탈/부착 메커니즘을 가지고 있다. 본 논문은 자동계류장치의 흡착 패드의 위치 및 속도제어에 필요한 선체와의 변위 및 속도 측정 시스템을 다룬다. 자동계류장치에 적합한 측 정 시스템을 설계하기 위하여, 본 논문은 우선 센서의 성능 및 실외 환경적 특성 분석을 수행한다. 다음으로 이러한 분석 결과를 토대로 실외 부두환경에서 설치되는 자동계류장치에 적합한 변위 및 속도 측정시스템의 구성 및 설계 방법에 대해 기술한다. 또한 센서의 측정상태 감지 및 속도 추정을 위한 알고리즘을 제시한다. 제안된 방법은 다양한 속도 구간에서의 변위 및 속도 측정 실험을 통해 그 유용성을 검증한다.
This paper presents relative navigation using intermittent laser-based measurement data for spacecraft flying formation that consist of two spacecrafts; namely, chief and deputy spacecrafts. The measurement data consists of the relative distance measured by a femtosecond laser, and the relative angles between the two spacecrafts. The filtering algorithms used for the relative navigation are the extended Kalman filter (EKF), unscented Kalman filter (UKF), and least squares recursive filter (LSRF). Numerical simulations reveal that the relative navigation performances of the EKF- and UKF-based relative navigation algorithms decrease in accuracy as the measurement outage period increases. However, the relative navigation performance of the UKF-based algorithm is 95 % more accurate than that of the EKF-based algorithm when the measurement outage period is 80 sec. Although the relative navigation performance of the LSRF-based relative navigation algorithm is 94 % and 370 % less accurate than those of the EKF- and UKF-based navigation algorithms, respectively, when the measurement outage period is 5 sec; the navigation error varies within a range of 4 %, even though the measurement outage period is increased. The results of this study can be applied to the design of a relative navigation strategy using the developed algorithms with laser-based measurements for spacecraft formation flying.