PURPOSES : A model for minimizing cutting loss and determining the optimum layout of blocks in pavements was developed in this study. METHODS : Based on literature review, a model which included constraints such as the amount, volume, overlap, and pattern, was developed to minimize the cutting loss in an irregular pavement shape. The Stach bond, stretcher bond, and herringbone patterns were used in this model. The harmony search and particle swarm algorithms were then used to solve this model. RESULTS : Based on the results of the model and algorithms, the harmony search algorithm yielded better results because of its fast computation time. Moreover, compared to the sample pavement area, it reduced the cutting loss by 20.91%. CONCLUSIONS : The model and algorithms successfully optimized the layout of the pavement and they have potential applications in industries, such as tiling, panels, and textiles.
This paper describes an adaptive hybrid evolutionary firefly algorithm for a topology optimization of truss structures. The truss topology optimization problems begins with a ground structure which is composed of all possible nodes and members. The optimization process aims to find the optimum layout of the truss members. The hybrid metaheuristics are then used to minimize the objective functions subjected to static or dynamic constraints. Several numerical examples are examined for the validity of the present method. The performance results are compared with those of other metaheuristic algorithms.