검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This article suggests the machine learning model, i.e., classifier, for predicting the production quality of free-machining 303-series stainless steel(STS303) small rolling wire rods according to the operating condition of the manufacturing process. For the development of the classifier, manufacturing data for 37 operating variables were collected from the manufacturing execution system(MES) of Company S, and the 12 types of derived variables were generated based on literature review and interviews with field experts. This research was performed with data preprocessing, exploratory data analysis, feature selection, machine learning modeling, and the evaluation of alternative models. In the preprocessing stage, missing values and outliers are removed, and oversampling using SMOTE(Synthetic oversampling technique) to resolve data imbalance. Features are selected by variable importance of LASSO(Least absolute shrinkage and selection operator) regression, extreme gradient boosting(XGBoost), and random forest models. Finally, logistic regression, support vector machine(SVM), random forest, and XGBoost are developed as a classifier to predict the adequate or defective products with new operating conditions. The optimal hyper-parameters for each model are investigated by the grid search and random search methods based on k-fold cross-validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with an accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963, and logarithmic loss of 0.0209. The classifier developed in this study is expected to improve productivity by enabling effective management of the manufacturing process for the STS303 small rolling wire rods.
        4,200원
        2.
        2021.05 구독 인증기관 무료, 개인회원 유료
        This study suggests a machine learning model for predicting the production quality of free-machining 303-series stainless steel small rolling wire rods according to the manufacturing process's operation condition. The operation condition involves 37 features such as sulfur, manganese, carbon content, rolling time, and rolling temperature. The study procedure includes data preprocessing (integration and refinement), exploratory data analysis, feature selection, machine learning modeling. In the preprocessing stage, missing values and outlier are removed, and variables for the interaction between processes and quality influencing factors identified in existing studies are added. Features are selected by variable importance index of lasso regression, extreme gradient boosting (XGBoost), and random forest models. Finally, logistic regression, support vector machine, random forest, and XGBoost is developed as a classifier to predict good or defective products with new operating condition. The hyper-parameters for each model are optimized using k-fold cross validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963 and logarithmic loss of 0.0209. In this study, the quality prediction model is expected to be able to efficiently perform quality management by predicting the production quality of small rolling wire rods in advance.
        4,000원