In this study, we analyze changes in soil heat flux and air temperature in August (summer) and January (winter) according to net radiation, at a mud flat in Hampyeong Bay. Net radiation was observed as -84.2~696.2 W/m2 in August and -79.4~352.5 W/m2 in January. Soil heat flux was observed as -80.7~139.5 Wm-2 in August and -49.09~137 W/m2 in January. Air temperature was observed as 24.2~32.9˚C in August and -1.5~11.1˚C in January. The rate of soil heat flux for net radiation (HG/RN) was 0.17 in August and 0.34 in January. Because the seasonal fluctuation in net radiation was bigger than the soil heat flux, net radiation in August was bigger than in January. We estimated a linear regression function to analyze variations in soil heat flux and air temperature by net radiation. The linear regression function and coefficient of determination for the soil heat flux by net radiation was y=0.19x-7.94, 0.51 in August, and y=0.39x-11.69, 0.81 in January. The time lag of the soil heat flux by net radiation was estimated to be within ten minutes in August 2012 and January 2013. The time lag of air temperature by net radiation was estimated at 160 minutes in August, and 190 minutes in January.
Surface heat budget of the Deukryang Bay from July 1, 1992 to September 12, 1993 is analyzed by using the meteorological data (by Changhung Observatory and Mokpo Meteorological Station) and oceanographical data (by Research Center for Ocean Industrial Development, Pukyong National University).
Each flux element at the sea surface which has annual variation is derived with application of an aerodynamical bulk method and empirical formulae. The solar radiation is the maximum in spring and summer, and the minimum in autumn and winter. The effective back radiation, the latent heat and the sensible heat are the maximum in autumn and winter, and minimum in summer.
The heat storage rate is calculated by using the rate of water temperature variation according to the depth. The oceanic transport heat is estimated as a residual. The net heat flux, the heat storage rate are positive in spring and summer, while they are negative in autumn and winter. The oceanic transport heat is convergence in winter and divergence in the rest of seasons.