검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of this study is to suggest a specific investigation guideline to decide priority of repairing old concrete pavements that pile up substantially. METHODS : In this study, a principle of division of homogeneous sections was proposed to reflect the characteristics of the pavement reasonably in the specific investigation results. In addition, a checklist and guideline of field investigation were suggested for the old concrete pavement sections, which require inspection toward their durability and structural performance. Furthermore, the items of laboratory test necessary to the old concrete pavement were suggested based on the existing laboratory test considering characteristics of the old concrete pavement. The present condition of the old concrete pavement could be analyzed by the test results. RESULTS: A method of division of homogeneous sections suitable for the specific investigation of the old concrete pavement was suggested. The proportions of distress severity of pavement sections were compared by distress type to figure out the present state of the old concrete pavement. Scaling, durability cracking (or alkali-silica reaction), and longitudinal spalling were selected as the most severe distress types. The detailed positions of the sections were also suggested. The checklist of the specific investigation was categorized by field survey and laboratory test, and its evaluation criteria were proposed. The three types of the sections of durability cracking (or alkali-silica reaction), bridge connection, and asphalt overlay were selected as the sections of the field survey. The compressive strength, void structure, and chloride penetration depth were suggested as the items of the laboratory test. CONCLUSIONS : A fundamental level of the guideline was suggested in this study to resolve the problem of old concrete pavement. Appropriate guidelines related to the repair of the old concrete pavement should be provided by performing additional research efforts.
        4,000원
        2.
        2013.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of this study was to investigate the disintegration mechanism of concrete due to the infiltration of the moisture to the milling overlay pavement and to come up with a method to minimize the disintegration as well as verifying the effectiveness of the edge sealing and Fogseal method. METHODS : This study investigated the distress mechanism due to the infiltrated moisture remaining in the milling overlay pavement through chloride freezing test and verified the effectiveness of the sealing of the milling edge and fog seal methods, which have been devised to minimize the moisture infiltration, through laboratory water permeability test. Additionally, long-term pavement performance was compared for the effectiveness of the proposed method through under loading test, and field water permeability test was carried out to verify the field applicability of the proposed method. RESULTS: The result of the research confirmed that chloride deteriorates the concrete surface through disintegration and lowers its strength and that the laboratory moisture infiltration test verified the effectiveness of the milling edge sealing and fog seal methods in the deterrence of moisture infiltration to the overlay pavement with excellent long-term performance of the pavement treated with the proposed method. Although the field water permeability test revealed some deterrence of moisture infiltration of the milling edge sealing and fog seal methods to a certain extent, the difference was a little. CONCLUSIONS: The milling edge sealing and fog seal methods are limited in their effectiveness for the cases of improvident compaction management or mixture with large void, and it is believed that installation of subsurface drainage is more effective in these cases.
        4,200원