검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2021.09 구독 인증기관 무료, 개인회원 유료
        Under physiological conditions, calcium (Ca2+) regulates essential functions of polarized secretory cells by the stimulation of specific Ca2+ signaling mechanisms, such as increases in intracellular Ca2+ concentration ([Ca2+]i) via the store-operated Ca2+ entry (SOCE) and the receptor-operated Ca2+ entry (ROCE). Homer proteins are scaffold proteins that interact with G protein-coupled receptors, inositol 1,4,5-triphosphate (IP3) receptors, Orai1-stromal interaction molecule 1, and transient receptor potential canonical (TRPC) channels. However, their role in the Ca2+ signaling in exocrine cells remains unknown. In this study, we investigated the role of Homer2 in the Ca2+ signaling and regulatory channels to mediate SOCE and ROCE in pancreatic acinar cells. Deletion of Homer2 (Homer2–/–) markedly increased the expression of TRPC3, TRPC6, and Orai1 in pancreatic acinar cells, whereas these expressions showed no difference in whole brains of wild-type and Homer2–/– mice. Furthermore, the response of Ca2+ entry by carbachol also showed significant changes to the patterns regulated by specific blockers of SOCE and ROCE in pancreatic acinar cells of Homer2–/– mice. Thus, these results suggest that Homer2 plays a critical role in the regulatory action of the [Ca2+]i via SOCE and ROCE in mouse pancreatic acinar cells.
        4,000원
        2.
        2006.12 구독 인증기관 무료, 개인회원 유료
        H₂O₂, a member of reactive oxygen species (ROS), is known to be involved in the mediation of physiological functions in a variety of cell types. However, little has been known about the physiological role of H₂O₂in exocrine cells. Therefore, in the present study, the effect of H₂O₂on cholecystokinin (CCK)-evoked Cα²+ mobilization and amylase release was investigated in rat pancreatic acinar cells. Stimulation of the acinar cells with sulfated octapeptide form of CCK (CCK-8S) induced biphasic increase in amylase release. Addition of 30μM H₂O₂ enhanced amylase release caused by 10 pM CCK-8S, but inhibited the amylase release induced by CCK-8S at concentrations higher than 100 pM. An ROS scavenger, 10 μM Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, increased amylase release caused by CCK-8S at concentrations higher than 100 pM, although lower concentrations of CCK-8S-induced amylase release was not affected. To examine whether the effect of H₂O₂on CCK-8S-induced amylase release was exerted via modulation of intracellular Cα²+ signaling, we measured the changes in intracellular Cα²+ concentration ([Cα²+]i) in fura-2 loaded acinar cells. Although 30 μM H₂O₂did not induce any increase in([Cα²+]i by itself, it increased the frequency and amplitude of([Cα²+]i oscillations caused by 10 pM CCK-8S. However, 30μM H₂O₂had little effect on 1 nM CCK-8S-induced increase in [Cα²+]i. ROS scavenger, 1 mM N-acetylcysteine, did not affect [Cα²+]i changes induced by 10 pM or 1 nM CCK-8S. Therefore, it was concluded that 30 μM H₂O₂ enhanced low concentration of CCK-8S-induced amylase release probably by increasing [Cα²+]i oscillations while it inhibited high concentration of CCK-8S-induced amylase release.
        4,000원