Gas identification techniques using pattern recognition methods were developed from four micro-electronic gas sensors for noxious gas mixture analysis. The target gases for the air quality monitoring inside vehicles were two exhaust gases, carbon monoxide (CO) and nitrogen oxides (NOx), and two odor gases, ammonia (NH3) and formaldehyde (HCHO). Four MEMS gas sensors with sensing materials of Pd-SnO2 for CO, In2O3 for NOX, Ru-WO3 for NH3, and hybridized SnO2-ZnO material for HCHO were fabricated. In six binary mixed gas systems with oxidizing and reducing gases, the gas sensing behaviors and the sensor responses of these methods were examined for the discrimination of gas species. The gas sensitivity data was extracted and their patterns were determined using principal component analysis (PCA) techniques. The PCA plot results showed good separation among the mixed gas systems, suggesting that the gas mixture tests for noxious gases and their mixtures could be well classified and discriminated changes.
We studied behaviour pattern of anchovy (Engraulis japonicus) shoal by a method of shoal echo integration and tested species identification by a method of artificial neural network using the acoustic data collected in the East China Sea in March 1994 and in the southern coastal waters of the East Sea of Korea in March 1995. Between areas, frequency distribution of 10 shoal descriptors was different, which showed characteristics of shoal behaviour in size, bathymetric position and acoustic strength. The range and mean of shoal size distribution in length and height was wider and bigger in the southern coastal waters of the East Sea than in the East China Sea. Relative shoal size of China Sea. Fractal dimension of shoal was almost same in both areas. Mean volume reverbration index of shoal was 3 dB higher in the southern coastal waters of the East Sea than in the East China Sea. The depth layer of shoal distribution was related to bottom depth in the southern coastal waters of the East Sea, while it was between near surface and central layer in the East China Sea. Principal component analysis of shoal descriptors showed the correlation between shoal size and acoustic strength which was higher in the southern coastal waters of the East Sea, than in the East China Sea. Correlation was also found among the bathymetric positions of shoal to some degree higher in the southern coastal waters of the East Sea than in the East China Sea. The anchovy shoal of two areas was identified by artificial neural network. The contribution factor index (Cio) of the shoal descriptors between two areas were almost identical feature. The shoal volume reverberation index (Rv) was showed the highest contribution to the species identification, while shoal length and shoal height showed relatively high negative contribution to the species identification.
Background : Cudrania tricuspidata Bureau is a widely used medicinal perennial woody plant. Obtaining information about the genetic diversity of plant populations is highly important for conservation and germplasm utilization. In this study, we developed single nucleotide polymorphism (SNP) markers derived from chloroplast genomic sequences to identify distinct Korean-specific ecotypes of C. tricuspidata via amplification refractory mutation system (ARMS)-PCR analyses. We performed molecular authentication of twelve C. tricuspidata ecotypes from different regions using DNA sequences in the chloroplast TrnL-F intergenic region. Methods and Results : SNPs were identified based on the results of nucleotide sequence for the intergenic region of TrnL-TrnF gene (chloroplast). Molecular markers were designed for those SNPs with additional mutations on the second base from SNPs for amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). HRM pattern analyses were performed using the Mx3005P QPCR System (Agilent Technologies, CA, USA). Conclusion : We collected 12 individual lines of C. tricuspidata from various region in South Korea and China. Based on the nucleotide sequence in the trnL-trnF intergenic region of these lines, six SNPs and a deletion of 12 bps were identified and 12 individual lines were able to be grouped in one Korean ecotype and two different ecotypes of chinese lines, chinese line 1 and 2. The SNP markers developed in this study are useful for rapidly identifying these specific C. tricuspidata ecotypes collected from different regions.