검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2023.10 구독 인증기관·개인회원 무료
        Phosphine is a common pesticide used to control grain pests in Rice Processing Complex(RPC). However, increasing use of aluminum phosphide caused the occurrence of phosphine resistance pests. In this study, phosphine resistance pests collected at RPC in 2023 was investigated with FAO No. 16 test, Dihydrolipomaide dehydrogenase(DLD) test and amino acid mutation analysis to identify the occurrence of phosphine resistance in Korea. Tested pests were collected in the 7 province 35 region. As a result of the FAO test of 21 regions, all sample were phosphine sensitives. In DLD test and amino acid analysis, 7 region samples were weak resistances. It is required to inspect the RPC and other grain storage continuously to inhibit the widespread of resistant pest.
        6.
        2018.10 구독 인증기관·개인회원 무료
        Phosphine (PH3) resistance in the stored-products insect pests has been reported throughout the world in various insect species, including Rhyzopertha dominica, Tribolium castaneum, and Cryptolestes ferrugineus, leading farmers and fumigators to identify new fumigation tools to control PH3-resistant insect pests in storage facilities. Understanding PH3-resistance mechanisms in insects might contribute to providing clues for the development of new chemicals, including fumigants, to control various PH3-resistant insects. A proteomic study has shown 15 decreased proteins in the PH3-resistant R. dominica (CRD343 strain) in comparison to the PH3-susceptible R. dominica, and among those 15 proteins, dihydrolipoamide dehydrogenase (DLD), a protein involved in the Krebs cycle, was identified (Park et al., 2008). The DLD polymorphisms responsible for genetic resistance have disulfide active sites for PH3 binding and are highly sensitive to arsenic exposure after mutagenesis in insects (R. dominica and T. castaneum) and Caenorhabditis elegans (Schlipalius et al., 2012). Here, two PH3- resistant S. oryzae strains were used to understand the development of PH3 resistance in these insects. Acute toxicity test by PH3 on the two PH3-resistant strains was undertaken followed by ethyl formate inhibition study on cytochrome c oxidase activity. The Lineweaver-Burk plots after inhibition studies showed there were significantly difference in inhibition mode between the resistant strains and the control. The RT-qPCR analysis and the next-generation sequencing of the mitochondrial DNA revealed significant changes in metabolism and energy production. Taken together, the PH3 resistance in S. oryzae was definitely acquired by the overall transformation of biochemical reactions to overcome PH3 toxicity.
        7.
        2017.04 구독 인증기관·개인회원 무료
        Worldwide, increasing numbers insecticide resistant insect is one of the main problem in agriculture not only in the field but also in the storage. The rusty grain beetle, Cryptolestes ferrugineus is one of the cosmopolitan insect that infests a wide range of stored cereals and related commodities. Until quite recently, phosphine (PH3) has been effective in controlling this species in worldwide including Korea. However, strongly resistant populations of RGB have been detected in Australia that could threaten market access of infested commodities. Resistant populations detected in Australia showed extremely high levels of resistance to phosphine, up to 1300 folds higher than that of susceptible strain. So here we tried to identify their phosphine resistance mechanism based on transcriptome analysis using RNaseq in adult stage. Over 10Gb were sequenced in each strains and some of specific P450 were over expressed in resistance strain.