검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        1997.12 KCI 등재 서비스 종료(열람 제한)
        Buserties are known to have layer structures with variable C dimension which depended on the nature interlayer catious and contents of water molecular between edge-sharing [MnO6] octabedral layers. Na-, Ca-, Mg-, and Zn-buserties were synthesized in the laboratory and studied for to know the structural states of water molecules and the role of catious in the buserite structures. With lowering the relative humidity(RH), Ca-buserite begins to dehydrate at 27% RH and proceeds further very slowly. Mg- and Zn- buserite also slow dehydration above 2% RH. With gradual ineveasing temperature Ca- and Zn-buserite show abrupt shifting of 10a peak (10a-phare) toward 7a peak. All of 7a-phare are further dehydrated to 5a-phare by further increasing temperature. It suggests that interlayer catious play a crucial role in the dehydration behavious of buserites. Simulation of one-dimensional X-ray diffraction patterns of buserties show that buserites have three layers of water molecules of different types: the very loosely bound and tightly bend waters, instead of two layers that was regarded by previous authers. The very loosely bound water is sited I open space of the interlayer, the loosely bound water is bound on the tightly bound water by hydrogen bond, and the tightly bond water in coodinately bound on the interlayer catious.