Physicochemical properties and storage stability of plant-based alternative meat prepared with low-fat soybean powder (LPAM) treated by supercritical-CO2 and those of full-fat soybean powder (FPAM) were compared. Ash and crude protein contents were higher in LPAM than in FRAM. Water absorption capacity and oil absorption capacity were significantly higher in LPAM than in FPAM. Water binding capacity was higher in LPAM than in FPAM during a 20 days storage period at 5℃ and pH was significantly lower in LPAM than in FPAM after a 5~10 days storage period. Hardness, gumminess and chewiness significantly increased with the increase in the storage period, and the three were significantly higher in LPAM than in FPAM after 10 days and 20 days of storage. The acid value showed no remarkable difference according to the storage period in LPAM; however, it was significantly higher in FPAM than in LPAM after 20 days of storage. The peroxide value and TBA value were significantly increased according to the storage period, and were significantly lower iin LPAM than in FPAM during all the storage periods. Therefore, the use of low-fat soybean powder may be effective in improving oxidative stability during storage in the production of plant-based alternative meat.