검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The serratus posterior inferior (SPI) muscle originates from the spinous process of T11-L2 and inserts at the lower border of the 9–12th ribs. This muscle is involved in thoracolumbar rotation and stability. Several positions can be used to improve trunk stability; the quadruped position is a good position for easily maintaining a neutral spine. In particular, during one arm lifting, various muscles act to maintain a neutral trunk position, and the SPI is one of these muscles. If trunk stability is weakened, uncontrolled trunk rotation may occur at this time. Tape can be used to increase trunk stability. There have been no studies on the effect of taping applied to the SPI muscle on thoracolumbar junction (TLJ) stability. Objects: This study compared the TLJ rotation angle between three different conditions (without taping, transverse taping, and SPI muscle direction taping). Methods: Thirty subjects were recruited to the study (18 males and 12 females). The TLJ rotation angle was measured during one arm lifting in a quadruped position (ALQP). Two taping methods (transverse and SPI muscle direction taping) were applied, and the TLJ rotation angle was measured in the same movement. Results: SPI muscle direction taping significantly reduced TLJ rotation compared to that without taping (p < 0.001) and with transverse taping (p < 0.001). There was a significant difference in the TLJ rotation angle between transverse taping and SPI muscle direction taping (p < 0.017). Conclusion: SPI muscle direction taping reduces the TLJ rotation angle during ALQP. Therefore, SPI muscle direction taping is one method to improve TLJ stability and reduce uncontrolled TLJ rotation during ALQP.
        4,000원
        2.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: Shoulder horizontal abduction in the prone position (SHAP) has been reported as an effective exercise to strengthen the lower trapezius. However, the effects of pre-emptive scapular posterior tilt on scapular muscle activity and scapulohumeral movements during SHAP have not been examined. Objectives: To examine the effect of the addition of scapular posterior tilt on muscle activity of the trapezius and posterior deltoid, and scapular posterior tilt and shoulder horizontal abduction, during SHAP. Design: Cross-sectional study. Methods: Fifteen healthy male subjects performed two types of SHAP: general and modified SHAP (SHAP combined with pre-emptive scapular posterior tilt). To perform modified SHAP, pre-emptive scapular posterior tilt training was performed prior to the modified SHAP. Muscle activity of the middle and lower trapezius and posterior deltoid, and the amount of scapular posterior tilt and shoulder horizontal abduction, were measured during two types of SHAP. Results: Muscle activity of the lower trapezius and scapular posterior tilt was significantly increased during the modified SHAP, while muscle activity of the posterior deltoid and the amount of shoulder horizontal abduction were significantly decreased. However, the middle trapezius muscle activity did not change during the modified SHAP. Conclusion: The SHAP with pre-emptive scapular posterior tilt can be useful to strengthen the lower trapezius.
        4,000원