검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2018.10 구독 인증기관·개인회원 무료
        Different laboratory strains of Drosophila melanogaster are reported to differ considerably in their physiology, behavior, and life-histories, due to their adaptations to different laboratory conditions. Recent advances in insect aging research have highlighted the importance of protein:carbohydrate (P:C) balance as a key dietary determinant of lifespan and other components of fitness, but it remains unexplored whether P:C balance affects the fitness-related traits of D. melanogaster in a strain-specific manner. The purpose of this study was to compare the life-history consequences of six different laboratory strains of D. melanogaster (three Canton-S substrains, w1118, yw, and Oregon-R) allocated to four synthetic diets differing in P:C ratio (1:16, 1:4, 1:1, or 4:1). Five components of fitness (lifespan, fecundity, larval viability, development time, and body mass) were recorded from flies maintained at 25oC under L:D 12:12 photoperiod. All strains exhibited qualitatively similar responses to dietary P:C balance, with the increase in P:C ratio being associated with shortened lifespan and improved egg production. In all strains, fly larvae confined to P:C 1:16 suffered high mortality, retarded growth, and reduced body size. As indicated by significant diet×strain interactions for all measured fitness components, the magnitude of such diet effect varied among different laboratory strains in D. melanogaster. Possible explanations for such strain differences are discussed.