본 논문에서는 보 구조물의 실시간 손상위치 경보를 위해 가속도 신호를 이용한 인공신경망기반 손상검색기법을 제안하였다. 이를 위해 먼저, 실시간 손상검색을 위해 가속도 응답신호만을 이용하는 새로운 인공신경망 알고리즘을 설계하였다. 구조물의 손상상태를 나타내는 특징으로 서로 다른 두 위치에서 측정된 가속도 신호의 교차공분산 값을 이용하였다. 다음으로 실제 하중조건을 모르는 상황을 고려하여 다양한 하중패턴에 따른 복수 신경망을 구성하였으며, 각각의 신경망 학습을 위한 손상시나리오를 선정하였다. 마지막으로 양단 자유보 모형실험을 통해 제안된 기법의 유용성과 적용성을 평가하였다.
This paper proposes real-time image-based damage detection method for concrete structures using deep learning. The proposed method is composed of three steps: (1) collection of a large volume of images containing damage information from internet, (2) development of a deep learning model (i.e., convolutional neural network (CNN)) using collected images, and (3) automatic selection of damage images using the trained deep learning model. The whole procedure of the proposed method has been applied to some figures taken in a real structure. This method is expected to facilitate the regular inspection and speed up the assessment of detailed damage distribution the without losing accuracy.