검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        등기하 해석법을 이용한 고유치 해석은 유한요소를 이용한 결과보다 고차 모드에서 더 정확한 결과를 주는 것으로 알려져 있다. 이는 유한요소법이 차수에 상관없이 요소 간에 C0연속성을 보이는 것과 다르게 등기하 해석법은 p차 요소에 대해서 Cp-1의 연속성을 보장하기 때문이다. 본 논문에서는 이러한 장점을 이용하여 등기하 해석법을 이용하여 모드 기반의 축소 모델을 구성하고 동적 거동 해석을 수행하였다. 축소 모델 구성을 위해 Craig-Bampton(CB) 기법을 적용하였다. 수치 예제를 통해 간단한 봉 요소에 대해 등기하 해석법과 유한요소 해석법을 적용하여 요소의 차수에 따른 고유치 해석 결과를 비교 분석하였다. 등기하 해석법에 중첩 노트를 허용하여 요소 간 연속성을 조절하고, 요소 간 연속성이 줄어듦에 따라 고차 모드에서의 수치 오차가 커짐을 확인하였다. 동적 거동 해석을 위한 축소 모델에 높은 차수의 외력이 주어지는 경우 요소간 연속 성이 높은 등기하해석법을 사용하면, 해의 정확도를 높일 수 있다.
        4,000원
        2.
        2017.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        다양한 산업 분야의 구조물은 여러 부구조의 조합으로 구성되며, 시스템의 자유도 또한 무수히 많다. 높은 복잡성을 가지 는 구조물의 해석 및 계산 효율을 향상시키기 위해서 해석 모델의 단순화 및 자유도 축소가 요구된다. 지난 50여 년 동안 규 모가 큰 공학적 문제를 단순화하기 위해 다양한 부분구조화 기법들이 개발되어 왔다. 이러한 부분구조화 기법들은 Newton-Raphson 알고리즘 등과 같은 반복계산을 동반하는 비선형 구조해석 문제 해석에 매우 효과적이다. 본 논문에서는 기 개발된 비선형 부분구조화 기법 중의 하나인 모드미분(modal derivatives)을 이용하여 기하비선형 보의 모델 축소에 적용 하고자 한다. 모드미분은 모드 기반 축소 기저의 2차항의 형태로, 선형모드의 조합으로 근사 가능한 변위벡터를 미소변위에 대한 Taylor 급수를 통해 확인할 수 있으며, 시스템의 고유치 문제를 모드 좌표로 미분을 함으로써 얻어진다. 모드미분에는 비선형 접선 강성행렬의 미분을 포함하고 있으며, 이는 유한차분법 등의 근사를 통해 계산할 수 있다. 제안된 방법론은 기하 학적 비선형 문제에 우수한 성능을 보이는 동시회전 유한요소법에 적용하였다. 수치예제를 통해 보의 경계가 수평으로 움직 일 수 있는 문제에서는 기존의 모드축소기법이 매우 비효율적임을 알 수 있었다. 한편 모드미분을 이용한 축소기법은 다양 한 경계조건에 대하여 우수한 성능을 보임을 확인하였다.
        4,000원