Resveratrol, which is both a phytoalexin with antifungal activity and a phytochemical associated with reduced cancer risk and reduced cardiovascular disease, is synthesized in a limited number of plant species including peanut. Resveratrol synthesis is catalyzed by the enzyme stilbene synthase including resveratrol synthase (RS). Resveratrol synthase gene (RS3) obtained from peanut, Arachis hypogaea, Fabaceae has been transferred into chinese foxglove, Rehmannia glutinosa by using Agrobacterium mediated transformation. RS t-DNA introduced to chinese foxglove (R. glutinosa L) by transformation and its reaction product, resveratrol-3-O-β-D-glucoside was isolated and characterized using HPLC. Also its biological effects was tested in inhibition of the lipid peroxidation of mouse LDL by glycosylated stilbenes derivatives obtained from transgenic plants. Resveratrol-3-O-β-D-glucoside isolated from transgenic R. glutinosa L. showed antimicrobial activity of the growth inhibition zone against Escherichia coli and Salmonella typhimurium. Therefore, this compound can be contributed to be useful as a phytoalexin for plant health as well as a phytochemical for human health.