We investigate the diffusion process of Thomson-scattered line photons in both real space and frequency space through a Monte Carlo approach. The emission source is assumed to be monochromatic and point-like embedded at the center of a free electron region in the form of a sphere and a slab. In the case of a spherical region, the line profiles emergent at a location of Thomson optical depth τTh from the source exhibit the full width of the half maximum σλ ≃ τ 1.5 Th . In the slab case, we focus on the polarization behavior where the polarization direction flips from the normal direction of the slab to the parallel as the slab optical depth τTh increases from τTh ≪ 1 to τTh ≫ 1. We propose that the polarization flip to the parallel direction to the slab surface in optically thick slabs is attributed to the robustness of the Stokes parameter Q along the vertical axis with respect to the observer’s line of sight whereas randomization dominates the remaining region as τTh increases. A brief discussion on the importance of our study is presented.
About 10 percent of quasars are known to exhibit deep broad absorption troughs blueward of prominent permitted emission lines, which are usually attributed to the existence of outflows slightly above he accretion disk around the supermassive black hole. Typical widths up to 0.2c of these absorption roughs indicate the velocity scales in which special relativistic effects may not be negligible. Under he assumption of the ubiquity of the broad absorption line region in quasars, the broad emission line flux will exhibit Thomson scattered components from these fast outflows. In this paper, we provide our Monte Carlo calculation of linear polarization of singly Thomson scattered line radiation with the careful considerations of special relativistic effects. The scattering region is approximated by a collection of rings that are moving outward with speeds υ =cβ < 0.2c near the equatorial plane, and the scattered line photons are collected according to its direction and wavelength in the observer's rest frame. We find that the significantly extended red tail appears in the scattered radiation. We also find that the linear degree of polarization of singly Thomson scattered line radiation is wavelength-dependent and hat there are significant differences in the linear degree of polarization from that computed from classical physics in the far red tail. We propose that the semi-forbidden broad emission line C III]1909 may be significantly contributed from Thomson scattering because this line has small resonance scattering optical depth in the broad absorption line region, which leads to distinct and significant polarized flux in this broad emission line.
방사선 영상 기술은 피사체의 조성 및 두께에 따라 변화되는 X선의 흡수계수 차이를 기반으로 형성되는 대조도를 영상화하는 기술로서 영상 검출기에 입사하는 1차선 뿐 만 아니라 산란선이 영상 품질에 큰 영향을 미친다. 이에 본 연구에서는 피사체 두께, 조사야 변화에 따라 발생하는 산란선이 영상 품질에 미치는 영향을 고찰하고자 몬테카를로 시뮬레이션을 통하여 FSR 및 SPR 분석을 수행하였다. 연구 결과, 피사체 두께에 따른 FSR은 최대 15.3%p, SPR은 2.00 ~ 4.54로 분석되었으나, 조사야 변화에 대해서는 일정한 값을 유지하는 것으로 분석되었다. 이러한 결과를 바탕으로 피사체 두께는 영상 품질에 영향을 미치는 인자로서 고려되어야 하지만, 조사야는 영상 품질에 영향을 미치지 못하는 인자임을 검증하였다. 이러한 본 연구 결과는 영상 품질 개선을 위한 산란선에 대한 기초 자료로서 활용할 수 있을 것으로 사료된다.
방사선 치료 시 환자는 부득이하게 산란선과 누설선에 의한 2차 방사선 피폭을 받게 된다. 진단용 방사선의 경우 진단참조준위로 환자의 피폭을 줄이기 위한 가이드라인을 제시하고 있지만 치료용 방사선의 경우 2차 방사선에 의한 피폭선량이 상당함에도 불구하고 상한치 설정 시 치료 효과의 저감을 이유로 선량을 제한하지 않고 있다. 이에 본 연구는 선형가속기를 이용한 방사선 치료 시 원거리 조직에서 환자가 받을 수 있는 2차 방사선을 형광유리선량계로 측정하였으며 형광유리선량계의 빌드업 특성에 따른 형광량의 포화도를 측정하였다. 연구 결과 조사야 경계로부터 거리가 멀어질수록 피폭선량은 급격히 줄어들었으며, 두부 1 Gy 조사 시 경부 18.45 mGy, 경부 1 Gy 조사 시 두부 15.55 mGy, 흉부 1 Gy 조사 시 경부 14.26 mGy, 골반 1 Gy 조사 시 흉부 1.14 mGy로 피폭되었다. 형광량의 포화도는 판독시점에 따라 1.8 ~ 4.8% 정도 과대평가 될 수 있음을 확인하였다.
본 연구는 진단용 X선 발생장치에서 조사야 외부의 산란선량을 감소시켜 환자의 피폭 선량을 감소시키기 위한 방법이다. 자체 제작한 150 × 190 mm2 납판을 콜리메이터 하단에 부착함으로써 조사야 이외의 부위에 도달하는 산란선량을 감소시키고자 하였다. 납판을 추가로 삽입 후 X선 관축방향인 X-축의 산란선량을 측정한 결과 26 ~ 36% 감소하는 것으로 나타났으며, 관축의 수직 방향인 Y-축 방향에서는 납판의 사용 유무에 따른 산란선량은 큰 변화를 나타내지 않았다. 이러한 결과는 콜리메이터 Shutter에 의해서 발생하는 산란선 보다는 초점 근방에서 발생하는 초점외 X선에 의한 산란선 영향이 크다는 것을 의미한다. 따라서 기존의 콜리메이터 하단에 추가로 납판을 설치하는 것이 조사야 외부의 X-축 산란선량을 감소시키는 방법으로 판단되어진다.
본 연구는 방사선 치료실 내부에 알루미늄 요철 크기가 다른 구조물을 부착하여 방사선 조사 중 발생되는 산란선량을 알아보고자 한다. 알루미늄 요철구조물을 방사선 치료실 벽면에 부착하고, 방사선 조사 중 발생하는 산란선을 측정대상으로 하였다. 알루미늄 요철의 크기는 1.5×1.5, 3×3, 5×5 cm2이고 크기는 가로⨯세로가 60×60 cm2 이다. 산란선 측정을 위한 TLD와 치료실 벽면까지의 거리는 310 cm이며 사용된 방사선 에너지는 선형가속기에서 발생되는 6MV, 15 MV 이다. 실험 결과 6 MV에서는 조사선량이 100, 300 cGy에서는 알루미늄 요철 구조물을 설치함으로써 산란선이 감소되었으나 200 cGy에서는 5×5 cm2의 요철구조물에서만 산란선이 감소되었다. 15 MV에서는 조사선량이 200, 300 cGy에서는 알루미늄 요철구조물을 설치함으로써 산란선이 감소되었으나 100 cGy에서는 요철구조물에 상관없이 비슷한 결과 값을 나타 내었다. 따라서 실내구조에 부가적으로 알루미늄 요철 구조물을 설치하는 것이 방사선 치료실 벽면에서 발생하는 산란선과 환자의 확률적 영향을 감소시킬 수 있는 방법이라 할 수 있다.
이 연구의 목적은 방사선 발생 장치에 의한 환자나 작업 종사자들의 피폭과 사용시설에 대한 방어 상태를 조사하는 데 있다. 수도권 대학병원의 엑스선 발생장치들을 대상으로 관전압 80 kVp, 관전류 200 mA, 1 sec의 최대 조사조건하 에서 제어실출입문, 제어실감시창, 촬영실출입문, 인접주위 등에서 측정하였다. 주당누설선량은 제어실 출입문에서 0.11 mR/week, 제어실 감시창에서 0.15 mR/week, 촬영실 출입문에서 0.12 mR/week, 인접 주위에서 0.06 mR/week로 측정되었다. 그리고 주당평균누설선량은 0.11 mR/week 이었다. 구해진 주당평균누설선량은 기준치 100 mR/week 이 하로 나타났으나 누설선량은 주기적인 측정으로 관리가 필요할 것으로 생각된다.