We have analyzed 42 research papers regarding on the solar astronomy written by North Korea scientists to investigate the current status of astronomical activities in North Korea. The papers are surveyed from the ‘Bulletin of Astronomy’, the ‘Physics’, the ‘Bulletin of Academy of Science’, and the ‘Natural Science’ in North Korea, and SCI journals. In addition, we refer to the presentation material announced in the 2015 IAU by director of Pyongyang Astronomical Observatory (PAO) and the 2013 OAD/IAU reports. We have analyzed the papers statistically according to three criteria such as research subject, research field, and research members. The main research subjects are the sunspot (28%), observation system (21%), and space environments (19%). The research fields are distributed with data analysis (50%), numerical method (29%), and instrument development (21%). There have been 25 and 9 researchers in the solar astronomy and space environment, respectively since 1995. North Korea’s solar research activities were also investigated in three area: instrument, solar physics, and international research linkage. PAO has operated two of sunspot telescope and solar horizontal telescope for spectroscopy and polarimetry, but there is no specific information on solar radio telescopes. North Korea has cooperated in solar research with Europe and China. We expect that the results of this study will be used as useful resource in supporting astronomical cooperation between South and North Korea in the future.
An attempt has been made to analyze time series of Hα, Hβ, and Hɤ line profiles taken from a 3B/X6.1 flare which occurred on Oct. 27, 1991 in an active region, NOAA 6891. A total of 22 sets of Hα, Hβ, and Hɤ taken with a low and non-uniform time resolution of 10-40 seconds were scanned by PDS with absolute intensity calibration to derive the physical characteristics of the material in the flare chromosphere. Our . results are as follows: (1) The lower Balmer lines observed during the flare activity are broadened by Stark effect. (2) At the peak of the flare activity, the electron temperature of the Balmer line emitting region reaches up to 35000K and its geometrical thickness increases to a scale of ~104km, suggesting that high energy particles penetrate deep into the photospheric level.