검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 46

        4.
        2019.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We apply a modified Convolutional Neural Network (CNN) model in conjunction with transfer learning to predict whether an active region (AR) would produce a ≥C-class or ≥M-class flare within the next 24 hours. We collect line-of-sight magnetogram samples of ARs provided by the SHARP from May 2010 to September 2018, which is a new data product from the HMI onboard the SDO. Based on these AR samples, we adopt the approach of shuffle-and-split cross-validation (CV) to build a database that includes 10 separate data sets. Each of the 10 data sets is segregated by NOAA AR number into a training and a testing data set. After training, validating, and testing our model, we compare the results with previous studies using predictive performance metrics, with a focus on the true skill statistic (TSS). The main results from this study are summarized as follows. First, to the best of our knowledge, this is the first time that the CNN model with transfer learning is used in solar physics to make binary class predictions for both ≥C-class and ≥M-class flares, without manually engineered features extracted from the observational data. Second, our model achieves relatively high scores of TSS = 0.640±0.075 and TSS = 0.526±0.052 for ≥M-class prediction and ≥C-class prediction, respectively, which is comparable to that of previous models. Third, our model also obtains quite good scores in five other metrics for both ≥C-class and ≥M-class flare prediction. Our results demonstrate that our modified CNN model with transfer learning is an effective method for flare forecasting with reasonable prediction performance.
        4,000원
        13.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study we develop a set of solar proton event (SPE) forecast models with NOAA scales by Multi Layer Perceptron (MLP), one of neural network methods, using GOES solar X-ray flare data from 1976 to 2011. Our MLP models are the first attempt to forecast the SPE scales by the neural network method. The combinations of X-ray flare class, impulsive time, and location are used for input data. For this study we make a number of trials by changing the number of layers and nodes as well as combinations of the input data. To find the best model, we use the summation of F-scores weighted by SPE scales, where F-score is the harmonic mean of PODy (recall) and precision (positive predictive value), in order to minimize both misses and false alarms. We find that the MLP models are much better than the multiple linear regression model and one layer MLP model gives the best result.
        4,000원
        1 2 3