In this study, we examine the relationships between the National Oceanic and Atmospheric Administration (NOAA) space weather scale frequencies and the maximum monthly sunspot number in each solar cycle: 1975 to 2020 for radio blackouts (R scales) and solar radiation storms (S scales), 1932 to 2020 for geomagnetic storms (G scales). Our main results are as follows. First, we find that NOAA space weather scale frequencies have strong solar cycle dependencies. Second, we propose new linear relationships between the frequency of certain scales (R1 to R4, and G1 to G4) and the maximum monthly sunspot number. T-test results show that R1 to R3 and G1 to G4 relationships are statistically meaningful, but marginal for R4. Third, our results significantly reduce the root-mean-square error (RMSE) between observed and suggested frequencies compared to the NOAA’s current frequencies. For example, in the case of solar cycle 24, our new prediction (74) for R3 scale is much more consistent with the observational frequency (74) than the NOAA prediction (175), and our prediction (85) for G3 scale is much closer to the observation (40) than the NOAA prediction (200). Our work may provide a useful guideline for advancing the space weather scales.
We present a novel method that can enhance the detection success rate of interstellar objects. Interstellarobjects are objects that are not gravitationally bound to our solar system and thus are believed to haveoriginated from other planetary systems. Since the nding of two interstellar objects, 1l/`Oumuamua in2017 and 2l/Borisov in 2019, much attention has been paid to nding new interstellar objects. In thispaper, we propose the use of Heliospheric Imagers (HIs) for the survey of interstellar objects. In particular,we show HI data taken from Solar TErrestrial RElation Observatory/Sun Earth Connection Coronal andHeliospheric Investigation and demonstrate their ability to detect `Oumuamua-like interstellar objects. HIs are designed to monitor and study space weather by observing the solar wind traveling throughinterplanetary space. HIs provide the day-side observations and thus it can dramatically enlarge theobservable sky range when combined with the traditional night-side observations. In this paper, we rstreview previous methods for detecting interstellar objects and demonstrate that HIs can be used for thesurvey of interstellar objects.
We have developed a data integration system for ground-based space weather facilities in Korea Astronomy and Space Science Institute (KASI). The data integration system is necessary to analyze and use ground-based space weather data efficiently, and consists of a server system and data monitoring systems. The server system consists of servers such as data acquisition server or web server, and storage. The data monitoring systems include data collecting and processing applications and data display monitors. With the data integration system we operate the Space Weather Monitoring Lab (SWML) where real-time space weather data are displayed and our ground-based observing facilities are monitored. We expect that this data integration system will be used for the highly efficient processing and analysis of the current and future space weather data at KASI.