검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2018.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Massive stars blow powerful stellar winds throughout their evolutionary stages from the main sequence to Wolf-Rayet phases. The amount of mechanical energy deposited in the interstellar medium by the wind from a massive star can be comparable to the explosion energy of a core-collapse supernova that detonates at the end of its life. In this study, we estimate the kinetic energy deposition by massive stars in our Galaxy by considering the integrated Galactic initial mass function and modeling the stellar wind luminosity. The mass loss rate and terminal velocity of stellar winds during the main sequence, red supergiant, and Wolf-Rayet stages are estimated by adopting theoretical calculations and observational data published in the literature. We find that the total stellar wind luminosity due to all massive stars in the Galaxy is about Lw ≈ 1.1 × 1041 erg s−1, which is about 1/4 of the power of supernova explosions, LSN ≈ 4.8 × 1041 erg s−1. If we assume that ∼ 1 − 10 % of the wind luminosity could be converted to Galactic cosmic rays (GCRs) through collisonless shocks such as termination shocks in stellar bubbles and superbubbles, colliding-wind shocks in binaries, and bow-shocks of massive runaway stars, stellar winds might be expected to make a significant contribution to GCR production, though lower than that of supernova remnants.
        4,300원
        2.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The main site of dust formation is believed to be the cool envelopes around AGB stars. Nearly all AGB stars can be identified as long-period variables (LPVs) with large amplitude pulsation. Shock waves produce by the strong pulsation and radiation pressure on newly formed dust grains drive dusty stellar winds with high mass-loss rates. IR observations of AGB stars identify various dust species in different physical conditions. Radio observations of gas phase materials are helpful to understand the overall properties of the stellar winds. In this paper, we review (i) classification of AGB stars; (ii) IR two-color diagrams of AGB stars; (iii) pulsation of AGB stars; (iv) dust around AGB stars including dusty stellar winds; (v) dust envelopes around AGB stars; (vi) mass-loss and evolution of AGB stars; and (vii) contribution of AGB dust to galactic environments. We discuss various observational evidences and their theoretical interpretations.
        4,800원
        3.
        1996.12 KCI 등재 SCOPUS 구독 인증기관·개인회원 무료
        To understand the dynamical structures of stellar wind bubble, one and two-dimensional calculations has been performed. Using FCT Code with cooling effects and assuming constant mass loss rate and ambient medium density, we could divide stellar winds into the regime of slow and fast winds. The slow wind driven bubble shows initially radiative and becomes partially radiative bubble in which shocked stellar wind zone is still adiabatic. In contrast., the fast wind driven bubble shows initially fully adiabatic and becomes adiabatic bubbles with radiative outer shell. We also determine analytically the onset of thin-shell formation time in case of fast wind driven bubble with power-law energy injection and ambient density structure. We solve the line transfer problem with numerical results in order to calculate line profile of [OIII] forbidden line.