Process mining is an analytical technique aimed at obtaining useful information about a process by extracting a process model from events log. However, most existing process models are deterministic because they do not include stochastic elements such as the occurrence probabilities or execution times of activities. Therefore, available information is limited, resulting in the limitations on analyzing and understanding the process. Furthermore, it is also important to develop an efficient methodology to discover the process model. Although genetic process mining algorithm is one of the methods that can handle data with noises, it has a limitation of large computation time when it is applied to data with large capacity. To resolve these issues, in this paper, we define a stochastic process tree and propose a tabu search-genetic process mining (TS-GPM) algorithm for a stochastic process tree. Specifically, we define a two-dimensional array as a chromosome to represent a stochastic process tree, fitness function, a procedure for generating stochastic process tree and a model trace as a string of activities generated from the process tree. Furthermore, by storing and comparing model traces with low fitness values in the tabu list, we can prevent duplicated searches for process trees with low fitness value being performed. In order to verify the performance of the proposed algorithm, we performed a numerical experiment by using two kinds of event log data used in the previous research. The results showed that the suggested TS-GPM algorithm outperformed the GPM algorithm in terms of fitness and computation time.
본 연구는 간헐 수문사상인 시간강수계열의 구조적 특성을 고찰하여 강수발생의 군집성을 고려한 강수발생과정에 대한 추계학적 모의발생 모형을 개발한 것이다. 먼저 강수사상의 발생패턴을 기술하기 위해 Poisson 군집과정을 사용하였고, 이 과정에서 군집간의 시간과 군집내의 사상 수는 지수분포로 기술하였다. 둘째로 사상의 지속기간과 군집내에서 사상간의 시간은 음대수혼합분포로 기술하였다. 마지막으로 이상과 같은 시간강수사상의 발생패턴과 사상기간내의 강수의 종속구