검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The result of the previous work leads to the idea that the inner area of the hyperbolic shell generator should be minimized for the cooling tower with higher first natural frequency. In this study the inner area of the hyperbolic shell generator was graphically established under varying height of the throat and angle of the base lintel. From the graph, several shell geometries were selected and analysed in the aspect of the natural frequency. Three representative towers reinforced differently due to different first natural frequencies were analysed non-linearly and evaluated using a damage indicator based on the change of natural frequencies. The results demonstrated that the damage behaviour of the tower reinforced higher due to a lower first natural frequency was not necessarily advantageous than the others
        4,000원
        2.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Determining of the shape in the process of design for natural draught cooling tower is very important, because the shape of hyperbolic shell is respond sensitively to dynamic behavior of the whole cooling tower against wind load. In engineering practice, the geometric parameters have been determining based on the natural frequency. This study analyses influence of the tower shell geometric parameters on the structural behavior. For three representative models were selected, they were analyzed based on evaluation of damage by means of nonlinear FE-method. As a result, a hyperbolic rotational shell with the small radius overall was the lowest damage index induced by sufficient capacity of the stress redistribution and thus a wind-insensitive structure.
        4,300원
        3.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        동일한 물성을 가지는 포장이라도 포장의 구조적인 형상에 따라 역해석 결과가 다르게 나타난다. 본 논문에서는, 구조적인 형상을 고정하고 동적 하중을 모사하는 3차원 유한요소모델을 만들어 얻어진 최대 처짐과 AREA의 분포를 통해서 물성을 추정하는 수정된 AREA 도표를 제안하였다. 제안된 도표를 이용하여 단일 무한 슬래브에 대한 민감도 분석 결과 노상의 깊이가 질어지면 처짐과 AREA가 증가하는 것으로 나타났고 4.0m이상에서는 큰 차이를 나타내지 않았다. 층별 물성과 노상 깊이가 같은 경우 단일 무한 슬래브 모델과 다중 유한 슬래브 모델을 비교하는 경우 다중 유한 슬래브 모델의 처짐과 AREA가 더 크게 나타났다.
        4,000원
        4.
        2012.05 서비스 종료(열람 제한)
        The shell of form-finding is most important in design procedure of the cooling tower, because the shape of the shell determines the sensitivity of dynamic behavior of the whole tower against wind excitation. The purpose of the study is the investigation of the influences of the geometric parameters of the cooling tower shell on the structural behavior. As a result, a hyperbolic rotational shell with the small radius overall will yield the shell geometry with a higher first natural frequency and thus a wind-insensitive structure. Linearly and nonlinearly numerical analysis are demonstrated influence of the shell-geometric parameters on structural behaviours. The results of this study may be informative for the form-finding of the cooling tower shell.