본 논문에서는 역전파학습에 의한 신경망기법을 사용하여 구조물의 미지계수를 추정하는 기법을 연구하였다. 대형구조물의 경우 계측 또는 추정하여야 하는 자유도의 수가 많으므로 인하여 구조계수를 추정하는 데에는 많은 어려움이 존재한다. 이러한 어려움을 극복하기 위하여 부구조추정법과 부행렬계수를 사용하여 추정하고자 하는 미지계수의 수를 효율적으로 줄일 수 있도록 하였다. 구조물의 고유주파수 및 모드형상 등의 모드계수를 신경망의 입력자료로 사용하였으며, 추정하고자 하는 부재의 부행렬계수를 신경방의 출력자료로 사용하였다. 입력자료로 사용되는 모드계수에 포함되어 있는 계측오차 및 신호처리오차의 영향을 줄이기 위하여, 신경망의 학습과정에서 노이즈를 첨가하는 기법을 사용하였다. 일반적인 형태의 자켓구조물을 대상으로 수치해석을 수행함으로써 제안기법의 대형구조계에 대한 적용성을 검증하였다.
본 논문에서는 대형구조물에서 구조물의 안전성 평가와 관련하여 구조물이 국부손상도를 추정하기 위한 효율적인 부분구조추정(Substructural Identification) 기법에 대하여 연구하였다. 먼저, 부분구조 추정법을 위한 모형식을 설정하기 위하여 운동방정식으로부터 부분구조에 대한 계측오차를 처리하기 위한 모형을 포함한 추계론적 자동회귀-이동평균(ARAMX) 모형식을 유도하였다. 추정된 모형식의 계수는 유도된 관계식을 이용하면, 구조손상 평가에 이용될 수 있는 강성행렬로 환산될 수 있다. 본 논문에서 유도된 부분구조 추정법의 가장 큰 장점은 매우 안정되고 정확도가 우수한 구조추정법인 ARMAX 모형식에 기반한 순차적 예측오차 방법을 사용함으로써 다른 방법에 비해 추정의 안정성 및 정확도가 뛰어나다는 것이다. 다음으로는 개발된 부분구조 추정법을 이용하여 구조 손상도 추정이 수행되었다. 손상도 추정을 위하여 앞서 순차적 예측오차 방법을 이용하여 추정된 구조계 현상태의 강성행렬을 바탕으로, 최소지승법을 이용하여 구하는 간접법이 제시되었다. 제시된 방법들의 검증을 위하여 예제해석이 수행되었다. 트러스 및 연속교 모형 그리고 실험적 예제에 적용하여 구조의 강성행렬 및 감쇠행렬을 추정하였다. 이를 바탕으로 손상도 추정방법이 검증되었다. 해석결과로부터, 개발된 방법이 효율적이고 정확도 및 안정성의 측면에서 우수한 성질이 있음을 확인할 수 있다.