검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.05 구독 인증기관·개인회원 무료
        The operation of nuclear power plants, nuclear waste depositories, and the decontamination and decommissioning of nuclear power plants all have the possibility of generating various kinds of radionuclides that can be formed as gaseous or liquid phases. Among the radionuclides, strontium is considered as most harmful substance due to its abundance in nuclear accident effluent, long half-life, high fission yield, high water solubility, and high mobility in aquatic environment. To remove strontium from aquatic environment, adsorption technique is mainly used with high economic feasibility, efficiency, and selectivity. Previously, we synthesized sodium titanates with mid-temperature hydrothermal method as selective strontium adsorbent in aqueous solution. Moreover, it was demonstrated that synthesized sodium titanates show high strontium adsorption rate with high selectivity with high surface area, pore diameter and volume. Herein, we investigated the surface structure of synthesized sodium titanates before and after strontium adsorption in aqueous solution using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) analysis. According to SEM and EDS experimental results, aquatic strontium can be adsorbed as surface precipitation with formation of cube-shaped structure, which is quite similar strontium titanate structure crystals onto the surface of sodium titanates. In addition, XPS experimental results revealed that the titanium ions on the surface of sodium titanates were oxidized during strontium surface precipitation process, and the sodium ion on the surface of sodium titanates were exchanged with aquatic strontium ions via ion exchange process during strontium adsorption process.