In this study, we present a facile method of fabricating graphene oxide (GO) filmson the surface of polyimide (PI) via layer-by-layer (LBL) assembly of charged GO. The positively charged amino-phenyl functionalized GO (APGO) is alternatively complexed with the nega-tively charged GO through an electrostatic LBL assembly process. Furthermore, we investi-gated the water vapor transmission rate and oxygen transmission rate of the prepared (reduced GO [rGO]/rAPGO)10 deposited PI film(rGO/rAPGO/PI) and pure PI film.The water vapor transmission rate of the GO and APGO-coated PI composite filmwas increased due to the intrinsically hydrophilic property of the charged composite films.However, the oxygen trans-mission rate was decreased from 220 to 78 cm3/m2·day·atm, due to the barrier effect of the graphene filmson the PI surface. Since the proposed method allows for large-scale production of graphene films, it is considered to have potential for utiliation in various applications.
Mass production of graphene-based materials, which have high specific surface area, is of importance for industrial applications. Herein, we report on a facile approach to produce thermally modified graphene oxide (TMG) in large quantities. We performed this experiment with a hot plate under environments that have relatively low temperature and no using inert gas. TMG materials showed a high specific surface area (430 m2g-1). Successful reduction was confirmed by elemental analysis, X-ray photoelectron spectroscopy, thermogravimetic analysis, and X-ray diffraction. The resulting materials might be useful for various applications such as in rechargeable batteries, as hydrogen storage materials, as nano-fillers in composites, in ultracapacitors, and in chemical/bio sensors.