검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2016.09 KCI 등재 서비스 종료(열람 제한)
        This paper applied the ensemble model output statistics (EMOS) with truncated normal distribution, which are easy to implement postprocessing techniques, to calibrate probabilistic forecasts of wind speed that take the form of probability density functions. We also considered the alternative implementations of EMOS, which were EMOS exchangeable model and reduced EMOS model. These techniques were applied to the forecasts of wind speed over Pyeongchang area using 51 members of the Ensemble Prediction System for Global (EPSG). The performances were evaluated by rank histogram, mean absolute error, root mean square error and continuous ranked probability score. The results showed that EMOS models with truncated normal distribution performed better than the raw ensemble and ensemble mean. Especially, the reduced EMOS model exhibited better prediction skill than EMOS exchangeable model in most stations of study area.