동역학의 새로운 변분이론인 확장 해밀턴 이론은 수학물리학을 비롯한 공학에 있어 초기치-경계치 문제해석에 광범위하게 적용될수 있는 기반을 제공하는 것으로 본 논문에서는 이 이론을 기반으로 선형탄성 단자유도계에 적용한 새로운 수치해석법을 제안하였다. 곧, 변분이론의 특성을 감안해, 전체 time-step에 대한 수치해를 한번에 산정하는 해석법을 제안하였고, 주요 예제를 통해 이 해석법의 특성을 살펴보았다. 에너지 보존 시스템의 경우(비감쇠 시스템에 외력이 작용치 않는 경우), time-step에 관계없이 에너지와 모멘텀이 보존되는 symplecticity property를 가지고 있음을 확인할 수 있었고, 감쇠 시스템인 경우, time-step이 점점 작아질수록 정확한 해에 빠르게 수렴하는 것을 확인하였다.
An attempt is made to find the boundary tangential components of potential magnetic fields without constructing solutions in the entire domain. In our procedure, the magnetic energy is expressed as a functional of tangential and normal magnetic fields at the boundary and is minimized by the variational principle. This paper reports a preliminary study on two dimensional potential fields above a plane.
A stochastic Hamilton variational principle(SHVP) is formulated for dynamic problems of linear continuum. The SHVP allows incorporation of probabilistic distributions into the finite element analysis. The formulation is simplified by transformation of correlated random variables to a set of uncorrelated random variables through a standard eigenproblem. A procedure based on the Fourier analysis and synthesis is presented for eliminating secularities from the perturbation approach. In addition to, a method to analyse stochastic design sensitivity for structural dynamics is present. A combination of the adjoint variable approach and the second order perturbation method is used in the finite element codes. An alternative form of the constraint functional that holds for all times is introduced to consider the time response of dynamic sensitivity. The algorithms developed can readily be adapted to existing deterministic finite element codes. The numerical results for stochastic analysis by proceeding approach of cantilever, 2D-frame and 3D-frame illustrates in this paper.