검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2021.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Vertically Aligned Carbon Nanotubes (VACNTs)-coated flexible aluminium (Al) foil is studied as an electrode for supercapacitor applications. VACNTs are grown on Al foil inside thermal Chemical Vapor Deposition (CVD) reactor. 20 nm thick layer of Fe is used as a catalyst while Ar, H2 and C2H2 are used as precursor gases. The effect of growth temperature on the structure of CNTs is studied by varying the temperature of CVD reactor from 550 °C to 625 °C. Better alignment of VACNTs arrays on Al foil is recorded at 600 °C growth temperature in comparison to other processing temperatures. Cyclic voltammetry results shows that VACNTs-coated Al foil has a specific capacitance of ~ 3.01 F/g at a scan rate of 50 mV/s. The direct growth of VACNT array results in better contact with Al foil and thus low ESR values observed in impedance spectroscopy analysis. This leads to a fast charge–discharge cycle as well as a very high value of power density (187.79 kW/ kg) suitable for high power applications. Moreover, wettability study shows that the fabricated VACNT electrode has a contact angle of more than 152° which signifies that it is a superhydrophobic surface and hence shows lower specific capacitance in comparison to reported values for VACNT array. Therefore, it is necessary to develop suitable post-processing strategies to make VACNTs hydrophilic to realize their full potential in supercapacitor applications.
        4,000원
        2.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanotubes (CNTs) have developed into one of the most competitively researched nano-materials of this decade because of their structural uniqueness and excellent physical properties such as nanoscale one dimensionality, high aspect ratio, high mechanical strength, thermal conductivity and excellent electrical conductivity. Mass production and structure control of CNTs are key factors for a feasible CNT industry. Water and ethanol vapor enhance the catalytic activity for massive growth of vertically aligned CNTs. A shower system for gas flow improves the growth of vertically aligned single walled CNTs (SWCNTs) by controlling the gas flow direction. Delivery of gases from the top of the nanotubes enables direct and precise supply of carbon source and water vapor to the catalysts. High quality vertically aligned SWCNTs synthesized using plasma enhance the chemical vapor deposition technique on substrate with suitable metal catalyst particles. This review provides an introduction to the concept of the growth of vertically aligned SWCNTs and covers advanced topics on the controlled synthesis of vertically aligned SWCNTs.
        4,000원