Infrared emissions from spherical dust, clouds are calculated using quasi-diffusion method. We have employed graphite-silicate mixture with power-law size distribution for the dust model. The grains are assumed to be heated and cooled by radiative processes only. The primary heating source is diffuse interstellar radiation field. hut the cases with an embedded source are also considered. Since graphite grains have higher temperature than silicate grains, the observed IR emission is mainly due to graphite grains, unless the fraction of graphite grains is negligibly small. The color temperature of Bok globules obtained from IRAS 60 and 100 μ m data are found to be consistent with the dust cloud with graphite-silicate mixture exposed to average interstellar radiation field. The color temperature is sensitive to the external radiation field, but rather insensitive to the size distribution of the grains. We found that the density distribution can be recovered outside the beam size using the inversion technique that assumes negligible optical depth. However, the information within the beam size is lost for if beam convolved intensity distributions are used in deriving density profile.
Recent redshift surveys suggest that most galaxies may be distributed on the surfaces of bubbles surrounding large voids. To investigate the quantitative consistency of this qualitative picture of large-scale structure, we study analytically the clustering properties of galaxies in a universe filled with spherical shells. In this paper, we report the results of the calculations for the spatial and angular two-point correlation functions of galaxies. With ∼20 ∼20 of galaxies in clusters and a power law distribution of shell sizes, nsh(R)∼R−α nsh(R)∼R−α , α≃4 α≃4 , the observed slope and amplitude of the spatial two-point correlation function ξgg(r) ξgg(r) can be reproduced. (It has been shown that the same model parameters reproduce the enhanced cluster two-point correlation function, ξcc(r) ξcc(r) ). The corresponding angular two-point correlation function w(θ) w(θ) is calculated using the relativistic form of Limber's equation and the Schecter-type luminosity function. The calculated w(θ θ ) agrees with the observed one quite well on small separations (θ≲2deg θ≲2deg ).
철도, 항공 및 기계구조물등의 많은 설계문제에서는 반복하중의 영향을 받기 때문에 제조와 품질제어 공정에서 특히, 반복하중의 영향이 심한 구조부품의 피로균열에 대한 연구가 충분히 선행되어야 한다. Paris법칙에서 응력확대계수범위 .DELTA.K에 10%오차를 수반하면 피로수명 N에는 50%정도의 오차를 초래할 만큼 민감도가 매우 크다. 그러나, 선형탄성파괴역학에 근거한 p-version 유한요소법은 응력확대계수를 산정하는데 있어서 종래의 h-version 유한요소법에 비해 훨씬 적합함이 증명되고 있다. 제안된 해석법의 효율성을 입증하기 위해 철도차량의 연결접합부에 있는 T-joint부위의 피로균열해석과 원공이 있는 유한판의 원공주위에서 발생되는 균열해석이 수행되었다.