토픽 모델링을 이용한 지속가능패션 연구 동향 분석
As interest in the sustainable fashion industry continues to increase along with climate issues, it is necessary to identify research trends in sustainable fashion and seek new development directions. Therefore, this study aims to analyze research trends on sustainable fashion. For this purpose, related papers were collected from the KCI (Korean Citation Index) and Scopus, and 340 articles were used for the study. The collected data went through data transformation, data preprocessing, topic modeling analysis, core topic derivation, and visualization through a Python algorithm. A total of eight topics were obtained from the comprehensive analysis: consumer clothing consumption behavior and environment, upcycle product development, product types by environmental approach, ESG business activities, materials and material development, process-based approach, lifestyle and consumer experience, and brand strategy. Topics were related to consumption, production, and education of sustainable fashion, respectively. KCI analysis results and Scopus analysis results derived eight topics but showed differences from the comprehensive analysis results. This study provides primary data for exploring various themes of sustainable fashion. It is significant in that the data were analyzed based on probability using a research method that excluded the subjective value of the researcher. It is recommended that follow-up studies be conducted to examine social trends.