논문 상세보기

태양광 물 분해를 통한 수소 생산용 Cu2O/CuO 이종접합 광전극의 제작 및 광전기화학적 특성 KCI 등재 SCOPUS

Fabrication and Photoelectrochemical Properties of a Cu2O/CuO Heterojunction Photoelectrode for Hydrogen Production from Solar Water Splitting

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/320249
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국재료학회지 (Korean Journal of Materials Research)
한국재료학회 (Materials Research Society Of Korea)
초록

We report on the fabrication and characterization of a novel Cu2O/CuO heterojunction structure with CuO nanorods embedded in Cu2O thin film as an efficient photocathode for photoelectrochemical (PEC) solar water splitting. A CuO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method; then, a Cu2O thin film was electrodeposited onto the CuO nanorod array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were examined using X-ray diffraction and scanning electron microscopy, as well as Raman scattering. The PEC properties of the fabricated Cu2O/CuO heterojunction photocathode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the Cu2O/CuO photocathode was found to exhibit negligible dark current and high photocurrent density, e.g. −1.05 mA/cm2 at −0.6 V vs. Hg/HgCl2 in 1 mM Na2SO4 electrolyte, revealing the effective operation of the oxide heterostructure. The photocurrent conversion efficiency of the Cu2O/CuO photocathode was estimated to be 1.27% at −0.6 V vs. Hg/HgCl2. Moreover, the PEC current density versus time (J-T) profile measured at −0.5 V vs. Hg/HgCl2 on the Cu2O/CuO photocathode indicated a 3-fold increase in the photocurrent density compared to that of a simple Cu2O thin film photocathode. The improved PEC performance was attributed to a certain synergistic effect of the bilayer heterostructure on the light absorption and electron-hole recombination processes.

저자
  • 김소영(충남대학교 차세대기판학과) | Soyoung Kim
  • 김효진(충남대학교 공과대학 신소재공학과) | Hyojin Kim Corresponding author
  • 홍순구(충남대학교 공과대학 신소재공학과) | Soon-Ku Hong
  • 김도진(충남대학교 공과대학 신소재공학과) | Dojin Kim