검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 17

        1.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Thermite welding is an exceptional process that does not require additional energy supplies, resulting in welded joints that exhibit mechanical properties and conductivity equivalent to those of the parent materials. The global adoption of thermite welding is growing across various industries. However, in Korea, limited research is being conducted on the core technology of thermite welding. Currently, domestic production of thermite powder in Korea involves recycling copper oxide (CuO). Unfortunately, controlling the particle size of waste CuO poses challenges, leading to the unwanted formation of pores and cracks during thermite welding. In this study, we investigate the influence of powder particle size on thermite welding in the production of Cu-thermite powder using waste CuO. We conduct the ball milling process for 0.5–24 h using recycled CuO. The evolution of the powder shape and size is analyzed using particle size analysis and scanning electron microscopy (SEM). Furthermore, we examine the thermal reaction characteristics through differential scanning calorimetry. Additionally, the microstructures of the welded samples are observed using optical microscopy and SEM to evaluate the impact of powder particle size on weldability. Lastly, hardness measurements are performed to assess the strengths of the welded materials.
        4,000원
        2.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The low-temperature sinterability of TiO2-CuO systems was investigated using a solid solution of SnO2. Sample powders were prepared through conventional ball milling of mixed raw powders. With the SnO2 content, the compositions of the samples were Ti1-xSnxO2-CuO(2 wt.%) in the range of x  0.08. Compared with the samples without SnO2 addition, the densification was enhanced when the samples were sintered at 900oC. The dominant mass transport mechanism seemed to be grain-boundary diffusion during heat treatment at 900oC, where active grain-boundary diffusion was responsible for the improved densification. The rapid grain growth featured by activated sintering was also obstructed with the addition of SnO2. This suggested that both CuO as an activator and SnO2 dopant synergistically reduced the sintering temperature of TiO2.
        4,000원
        3.
        2021.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The preparation of graphene oxide and the modification of its surface directly with copper pentacyanonitrosylferrate (III) nanoparticles are presented in this work, as well as the characterization of the materials using Fourier-transform infrared spectra, X-ray diffractometry and scanning electron microscopy techniques. Beyond that, the study on the electrochemical behavior of the dispersed bimetallic complex on the graphene oxide, as known as GOCuNP, surface was carried out by the cyclic voltammetry technique. The graphite paste electrode modified with GOCuNP was successfully applied in the detection of hydrazine, presenting limit of detection of 1.58 × 10–6 mol L−1 at concentration range of 1.00 × 10–5 to 5.00 × 10–3 mol L−1 of hydrazine, being so the proposed bimetallic complex formed can be considered as a potential candidate for the manufacturing of electrochemical sensors for hydrazine detection.
        4,500원
        4.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigates Ag coated Cu2O nanoparticles that are produced with a changing molar ratio of Ag and Cu2O. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and Cu2O determination, and SEM image analysis confirms that Ag is partially coated on the surface of Cu2O nanoparticles. The conductive paste with Ag coated Cu2O nanoparticles approaches the specific resistance of 6.4 Ω·cm for silver paste(SP) as (Ag) /(Cu2O) the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of 100 μm or less has a surface resistance of 5 to 20 μΩ·cm, while in this research an Ag coated Cu2O paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of 10 μm or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.
        4,000원
        5.
        2018.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Copper oxide thin films are deposited using an ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of substrate temperature and incorporation of a chelating agent on the growth of copper oxide thin films, the structural and optical properites of the copper oxide thin films are analyzed by X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), and UV-Vis spectrophotometry. At a temperature of less than 350 ℃, threedimensional structures consisting of cube-shaped Cu2O are formed, while spherical small particles of the CuO phase are formed at a temperature higher than 400 ℃ due to a Volmer-Weber growth mode on the silicon substrate. As a chelating agent was added to the source solutions, two-dimensional Cu2O thin films are preferentially deposited at a temperature less than 300 ℃, and the CuO thin film is formed even at a temperature less than 350 ℃. Therefore the structure and crystalline phase of the copper oxide is shown to be controllable.
        4,000원
        6.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Free-standing electrodes of CuO nanorods in carbon nanotubes (CNTs) are developed by synthesizing porous CuO nanorods throughout CNT webs. The electrochemical performance of the free-standing electrodes is evaluated for their use in flexible lithium ion batteries (LIBs). The electrodes comprising CuO@CNT nanocomposites (NCs) were characterized by charge-discharge testing, cyclic voltammetry, and impedance measurement. These structures are capable of accommodating a high number of lithium ions as well as increasing stability; thus, an increase of capacity in long-term cycling and a good rate capability is achieved. We demonstrate a simple process of fabricating free-standing electrodes of CuO@ CNT NCs that can be utilized in flexible LIBs with high performance in terms of capacity and cycling stability.
        4,000원
        8.
        2017.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Various morphologies of copper oxide (CuO) have been considered to be of both fundamental and practical importance in the field of electronic materials. In this study, using Cu (0.1 μm and 7 μm) particles, flake-type CuO particles were grown via a wet oxidation method for 5min and 60min at 75 oC. Using the prepared CuO, AlN, and silicone base as reagents, thermal interface material (TIM) compounds were synthesized using a high speed paste mixer. The properties of the thermal compounds prepared using the CuO particles were observed by thermal conductivity and breakdown voltage measurement. Most importantly, the volume of thermal compounds created using CuO particles grown from 0.1 μm Cu particles increased by 192.5% and 125 % depending on the growth time. The composition of CuO was confirmed by X-ray diffraction (XRD) analysis; cross sections of the grown CuO particles were observed using focused ion beam (FIB), field emission scanning electron microscopy (FE-SEM), and energy dispersive analysis by X-ray (EDAX). In addition, the thermal compound dispersion of the Cu and Al elements were observed by X-ray elemental mapping.
        4,000원
        9.
        2016.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Cu-Mn과 Cu-Zn 촉매를 침전제로 다르게 하거나, 금속의 몰비율, 소성온도를 다르게 하여 공침법으로 제조하였고 CO산화반응을 수행하여 혼합산화물 촉매에서 Cu, Mn과 Zn의 영향 및 소성온 도가 미치는 영향을 조사하였다. 촉매의 물리·화학적 특성을 알아보기 위하여 XRD, N2 흡착 및 SEM 의 분석을 수행하였다. Na2CO3로 침전시켜 270℃로 소성하여 제조한 2Cu-1Mn 산화물 촉매가 저온에 서 CO 산화반응 활성이 가장 좋았으며 2Cu-1Mn 산화물 촉매는 43 m2/g으로 가장 높은 비표면적과 촉매 활성을 나타내었다. XRD로 촉매의 결정구조를 분석하였을 때 Cu0.5Mn2.5O4의 결정구조를 갖는 촉 매는 낮은 활성을 보였다. 270℃에서 소성한 촉매가 좋은 활성을 나타냈으며 Pt 촉매와 비교하여도 저 온에서 CO산화반응이 더욱 우수함을 알 수 있었다.
        4,000원
        10.
        2015.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the detection characteristics of nitrogen monoxide(NO) gas using p-type copper oxide(CuO) thin film gas sensors. The CuO thin films were fabricated on glass substrates by a sol-gel spin coating method using copper acetate hydrate and diethanolamine as precursors. Structural characterizations revealed that we prepared the pure CuO thin films having a monoclinic crystalline structure without any obvious formation of secondary phase. It was found from the NO gas sensin measurements that the p-type CuO thin film gas sensors exhibited a maximum sensitivity to NO gas in dry air at an operating temperature as low as 100 oC. Additionally, these CuO thin film gas sensors were found to show reversible and reliable electrical response to NO gas in a range of operating temperatures from 60 oC to 200 oC. It is supposed from these results that the ptype oxide semiconductor CuO thin film could have significant potential for use in future gas sensors and other oxide electronics applications using oxide p-n heterojunction structures.
        4,000원
        11.
        2015.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Copper is an essential micronutrient whose deficiency is often seen to occur in humans. Although many biomedical studies have focused on the use of nanoparticles, the nutritional effects of nano-sized copper oxide particles are not well known. This aim of this study was to investigate the nutritional bioavailability of nano- and micro-sized copper oxide (CuO) particles in copper-deficient (CuD) mice. Copper deficiency was induced in mice by feeding a CuD diet (0.93 mg Cu/kg diet) for 7 weeks. After the induction of copper deficiency, nano- or micro-sized copper oxide particles were administered orally at two different doses (0.8 and 4.0 mg CuO/kg body weight) to mice in the following groups: (1) normal control (NC), (2) CuD, (3) low dose micro-sized CuO, (4) high dose micro-sized CuO, (5) low dose nano-sized CuO, and (6) high dose nano-sized CuO. The hepatic copper concentration in the CuD group was significantly lower than that in the NC group. Compared to the NC group, the CuD group exhibited lower serum ceruloplasmin (CP) activity and CP level. The copper/zinc-superoxide dismutase activity in the CuD group was significantly lower than that in the NC group. Treatment with nano- or micro-sized copper oxide particles for 2 weeks restored the hepatic copper levels and serum CP activities to values similar to those observed in the NC group. The CP levels and copper/zinc-superoxide dismutase activities in all the copper oxide treatment groups also recovered to normal values after 3 weeks of copper oxide treatment. These results show that oral administration of either nano- or micro-sized copper oxide particles for 2–3 weeks restored the normal condition in previously CuD mice.
        4,300원
        12.
        2013.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A simple thermal oxidation of Cu thin films deposited on planar substrates established a growth of vertically aligned copper oxide (CuO) nanorods. DC sputter-deposited Cu thin films with various thicknesses were oxidized in environments of various oxygen partial pressures to control the kinetics of oxidation. This is a method to synthesize vertically aligned CuO nanorods in a relatively shorter time and at a lower cost than those of other methods such as the popular hydrothermal synthesis. Also, this is a method that does not require a catalyst to synthesize CuO nanorods. The grown CuO nanorods had diameters of ~100 nm and lengths of 1~25μm. We examined the morphology of the synthesized CuO nanorods as a function of the thickness of the Cu films, the gas environment, the oxidation time, the oxidation temperature, the oxygen gas flow rate, etc. The parameters all influence the kinetics of the oxidation, and consequently, the volume expansion in the films. Patterned growth was also carried out to confirm the hypothesis of the CuO nanorod protrusion and growth mechanism. It was found that the compressive stress built up in the Cu film while oxygen molecules incorporated into the film drove CuO nanorods out of the film.
        4,000원
        13.
        2010.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the present work, ethylene glycol-based (EG) copper oxide nanofluids were synthesized by pulsed wire evaporation method. In order to explode the pure copper wire, high voltage of 23 kV was applied to the both ends of wire and argon/oxygen gas mixture was used as reactant gas. EG-based copper oxide nanofluids with different volume fraction were prepared by controlling explosion number of copper wire. From the transmission electron microscope (TEM) image, it was found that the copper oxide nanoparticles exhibited an average diameter about 100 nm with the oxide layer of 2~3 nm. The synthesized copper oxide consists of CuO/ phases and the Brunauer Emmett Teller (BET) surface area was estimated to be . From the analyses of thermal properties, it is suggested that viscosity and thermal conductivity of EG-based copper oxide nanofluids do not show temperature-dependent behavior over the range of 20 to . On the other hand, the viscosity and thermal conductivity of EG-based copper oxide nanofluids increase with volume fraction due to the active Brownian motion of the nanoparticles, i.e., nanoconvection.
        4,000원
        14.
        2006.04 구독 인증기관·개인회원 무료
        A hyrdrothermal synthesis has been developd to prepare rod-like crystals of copper oxide using copper nitrate trihydrate as a function of synthesis temperature, stirring speed and solution pH value. The properties of the fabricated crystals were studied using scanning electron microscopy, X-ray diffraction and particle size analysis. The morphology of the synthesized CuO was dependent on both the pH value of the solution and the morphology of the seed materials. Synthesized particles have regular morphologies and a uniform size distribution.
        16.
        2005.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The copper oxide nano powders were synthesized by levitational gas condensation(LGC) method, and their high heterogeneous catalytic effects of oxidation of 2,3,5-trimethyl-1,4- hydroquinone (TMHQ) and catalase activity were studied. The observation of transmission electron microscopy (TEM) shows that most of these nano powders are uniform in size, with the average particle size of 35 nm. The nano powder consists of mainly , but it is aged to CuO phase. The catalytic effect which was clarified by oxidation of TMHQ and catalase depends on the amount of cuprite phase and the particle size.
        4,000원
        17.
        2003.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The reduction mechanism of the composite powders mixed with and CuO has been studied by using thermogravimetry (TG), X-ray diffraction, and microstructure analyses. The composite powders were made by simple Turbula mixing, spray drying, and ball-milling in a stainless steel jar with the ball to powder ratio of 32 to 1 at 80 rpm for 1 h without process controlling agents. It is observed that all the oxide composite powders are converted to W-coated Cu composite powder after reducing treatment under hydrogen atmosphere. For the formation mechanism of W-coated Cu composite powder, the sequential reduction steps are proposed as follows: CuO contained in the ball-milled composite powder is initially reduced to Cu at the temperature range from 20 to 30. Then, powder is reduced to W via W and W at higher temperature region. Finally, the gaseous phase of formed by reaction of with water vapour migrates to previously reduced Cu and deposits on it as W reduced by hydrogen. The proposed mechanism has been proved through the model experiment which was performed by using Cu plate and powder.der.
        4,000원