검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2019.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study investigates Ag coated Cu2O nanoparticles that are produced with a changing molar ratio of Ag and Cu2O. The results of XRD analysis reveal that each nanoparticle has a diffraction pattern peculiar to Ag and Cu2O determination, and SEM image analysis confirms that Ag is partially coated on the surface of Cu2O nanoparticles. The conductive paste with Ag coated Cu2O nanoparticles approaches the specific resistance of 6.4 Ω·cm for silver paste(SP) as (Ag) /(Cu2O) the molar ratio increases. The paste(containing 70 % content and average a 100 nm particle size for the silver nanoparticles) for commercial use for mounting with a fine line width of 100 μm or less has a surface resistance of 5 to 20 μΩ·cm, while in this research an Ag coated Cu2O paste has a larger surface resistance, which is disadvantageous. Its performance deteriorates as a material required for application of a fine line width electrode for a touch panel. A touch panel module that utilizes a nano imprinting technique of 10 μm or less is expected to be used as an electrode material for electric and electronic parts where large precision(mounting with fine line width) is not required.
        4,000원
        2.
        2015.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, the properties of Ag-coated TiO2 nanoparticles were observed, while varying the molar ratio of water and Ag+ for the surfactant and TiO2. According to the XRD results, each nanoparticle showed a distinctive diffraction pattern. The intensity of the respective peaks and the sizes of the nanoparticles increased in the order of AT1(R1 = 5)(33.3 nm), AT2 (R1 = 10)(38.1 nm), AT3(R1 = 20)(45.7 nm), AT4(R1 = 40)(48.6 nm) as well as AT5(R2 = 0.2, R3 = 0.5)(41.4 nm), AT6(R2 = 0.3, R3 = 1)(45.1 nm), AT7(R2 = 0.5, R3 = 1.5)(49.3 nm), AT8(R2 = 0.7, R3 = 2)(57.2 nm), which values were consistent with the results of the UV-Vis. spectrum. The surface resistance of the conductive pastes fabricated using the prepared Ag-coated TiO2 nanoparticles exhibited a range 7.0~9.0(274~328 μΩ/cm2) times that of pure silver paste(ATP)(52 μΩ/cm2).
        4,000원