간행물

한국발생생물학회 학술대회논문집

권호리스트/논문검색
이 간행물 논문 검색

권호

한국발생생물학회 2013년도 추계학술대회 (2013년 8월) 74

포스터 발표

21.
2013.08 서비스 종료(열람 제한)
During implantation, endometrial cells undergo functional and structural changes, and support the successful embryo development. This reaction is known as decidualization and is critical to placental formation and to prevent the uterine functions. This progress is achieved by complex communication of regulators such as hormones, cytokines and growth factors. Some of the TGF-b superfamily members such as inhibin, activin, TGF-β, and bone morphogenetic proteins (BMP) involve in uterine modulation during pregnancy. Müllerian inhibiting factor (MIF) is a member of TGF-β superfamily and regulate folliculogenesis, but its expression and roles in uterus are not clear. In this study, we investigated the expression of MIF and its receptor Ⅱ in decidualizing endometrium. Interestingly its expression was detected in the fully decidualized cells. Its receptor II was detected in undifferentiated stromal cells. MIF expression was increased by decidual maturation and MIF receptor II was decreased by decidual reaction. MIF expression was induced by estrogen and its receptor II was increased by only progesterone in the stroma cells primed with estrogen. In the uterus of delayed implantation model mice, MIF expression was peak after 6 hr of estrogen administration. MIF receptor II expression was not induced. It means that MIF and MIF receptor II are expressed in the stroma cells with the specificity on physiological status. Based on them, it is suggested that MIF may work as paracrine factors in uterus during decidualization.
22.
2013.08 서비스 종료(열람 제한)
Autophagy is a major cellular catabolic pathway and is tightly associated with survival and death of cells. The involvement of autophagy during prolonged survival of blastocysts in the uterus is established and it was assumed that ovarian steroid hormones – estrogen (E2) and progesterone (P4) – play important roles in its regulation. The uterus is a major target organ of E2 and P4. To examine if E2 or P4 modulate autophagy in the mouse uterus in vivo, the following three systems were used. 1) Normal pregnancy model (days 1 to 8); 2) delayed implantation model; 3) ovariectomized (OVX) mice model treated with single steroid hormone. Six-week-old virgin ICR mice were used for pregnancy and OXV. OVX mice received P4 (1 mg/0.1 ml) or E2 (100 ng/0.1 ml) after 12 days of rest. Collected uteri were subjected to Western blotting and immunofluorescence staining using anti-LC3B antibody to monitor autophagy. In pregnant mouse uterus, the autophagic response was downregulated after implantation. In OVX model, either E2 or P4 injection downregulated the autophagic response in the uterus within several hours. To confirm whether hormone-induced downregulation is mediated by classical estrogen receptor (ER) and progesterone receptor (PR), receptor antagonists (ICI 182,780 and RU-486) were co-treated. Antagonist-treated uteri showed recovery of autophagic response, suggesting that ER or PR mediates hormonal effects on autophagy. In oder to determine which signaling pathway is involved in autophagic regulation by E2, rapamycin (5 mg/kg), a mTOR inhibitor, and LY294002 (5 mg/kg), a PI3 kinase inhibitor, were used. Rapamycin and LY294002 were injected just before E2 injection to OVX mice. Western blotting was performed by using anti-phospho-mTOR and anti-AKT antibodies. We observed that rapamycin treatment partially antagonized downregulation of autophagic activation by E2, whereas LY294002 treatment did not have any effect. Therefore, downregulation of autophagy by E2 seems to be partially mediated by mTOR pathway. Collectively, this study suggests that ovarian steroid hormones are upstream controllers of autophagic response in the mouse uterus.
23.
2013.08 서비스 종료(열람 제한)
Anthocyanins are the largest group of water-soluble pigments in the plant kingdom. They are widely distributed in the human diet through crops, beans, fruits, vegetables and red wine. The specific health effects that anthocyanins might have in vivo are not known, although there are several possibilities related to obesity, cardiovascular disease, and cancer. In this study we used human subcutaneous adipose mesenchymal stem cells (hADSC) and mouse subcutaneous adipose mesenchymal stem cells (mADSC) to evaluate the effects of anthocyanins. And we examined the effect of cell activity and adipocyte differentiation by Cyanidin-3-O-glucoside (C3G), Delphinidin-3-ß-D-glucoside (D3G) that are among the anthocyanin family and black soybean extract. Using MTT assay method, we tested cellular metabolic activity. In mADSC, cell activity is significantly decreased by C3G and D3G (50 uM, 100 uM, and 200 uM), and black soybean extract (100 ug/ml and 200 ug/ml). In hADSC, cell activity is significantly decreased only by C3G (50 uM, 100 uM and 200 uM) unlike in mADSC. Cell activity is significantly increased of 100 uM D3G and black soybean extract (50 ug/ml, 100 ug/ml and 200 ug/ml). In mADSC, 50 uM C3G promoted differentiation into adipocyte but no effect in other concentration. D3G suppressed the differentiation of mADSC at 100 uM and 200 uM. 50 ug/ml black soybean extract promoted differentiation of mADSC, but 200 ug/ml black soybean extract suppressed differentiation. In hADSC, 50 uM, 100 uM and 200 uM C3G suppressed differentiation. 100 uM D3G promoted differentiation into adipocyte, but 200uM D3G suppressed it. Black soybean extract suppressed the differentiation into adipocyte at 50 ug/ml, 100 ug/ml and 200 ug/ml. These data showed that the responsibility to the C3G and D3G were different between hADSC and mADSC. Interestingly the responsibility to the black soybean extract was similar between hADSC and mADSC. Based on them, it is suggested that there are species-specificity to the cellular responsibility to the anthocyanins in subcutaneous ADSC.
24.
2013.08 서비스 종료(열람 제한)
Brown algae is variety of biological compounds, including xanthophyll, pigments, fucoidans, phycocolloids, and phlorotannins. Several studies concerning these types of compounds have pointed out the variety of biological benefits associated with the algae, including antioxidant, anticoagulant, antihypertension, antibacterial, and antitumor activities. Diphlorethohydroxy- carmalol (DPHC) is a phlorotannin compound isolated from the brown algae Ishige okamurae, with various biological activities in vitro and in vivo. Numerous studies have shown that antioxidant assist inhibition of accumulation of fat. So we studied that effect of DPHC isolated from Ishige okamurae modified the accumulation of fat on preadipocyte, 3T3-L1 cells in vitro. First, the viability of cell was analyzed after 0.4, 2, 10, 50 μg/ml of DPHC treatment using MTT (3-[4,5-dimethylthiazo-2-yl]-2,5-diphenyl tetrazolium bromide) assay. Second, proliferation of cell was analyzed after 0.4, 2, 10, 50 μg/ml of DPHC treatment through measure doubling time. 3T3-L1 cell differentiation into adipocyte was analyzed after induction in the induction medium containing DPHC. The metabolic activity was suppressed by DPHC in concentration dependent manner. Doubling of 3T3-L1 was delayed by the treatment of DPHC in concentration dependent manner. DPHC also inhibit accumulation of triglyceride in the adipocyte. The expression of the marker genes for adipocyte differentiation coincided with cytochemical results. Base on them, it is suggested that DPHC suppress proliferation of adipose precursor cell and differentiation into adipocytes.
25.
2013.08 서비스 종료(열람 제한)
Vitrification uses cryoprotectants and liquid nitrogen, which may cause osmotic stress and cryodamage to oocytes. Autophagy is widely considered as a survival or responsive mechanism to various environmental and cellular stresses. However, the status of autophagy in vitrified-warmed oocytes has not been studied. In this work, we investigated if vitrification-warming process induces autophagy in mouse oocytes. Four-week-old female ICR mice and GFP-LC3 transgenic mice were used. The mice were superovulated with 5IU PMSG and 5IU hCG and ovulated MII oocytes were collected from oviducts. Oocytes obtained from several mice were pooled and divided into three groups. Group1: fresh oocytes. Group2: oocytes treated with vitification solutions (1.3 M EG+1.1 M DMSO and 2.7 M EG+2.1 M DMSO+0.5 M sucrose for 2.5 min) and warming solutions (0.5 M, 0.25, 0,125, and 0 M sucrose at intervals 2.5 min). Group3: vitrified-warmed oocytes (loaded onto an EM copper grid, and were stored in LN2 for 2 weeks). RT-PCR and confocal live imaging of GFP-LC3 were performed to examine the effects of vitrification-warming process on autophagy in oocytes. In RT-PCR analyses, expression of autophagy related (Atg) genes, such as Atg5, Atg7, Atg12, LC3a, LC3b, and Beclin1 was examined. Expression of Atg7 and Atg12 was slightly reduced in Group 3 (vitrified-warmed oocytes). The expression levels of other Atg genes did not change. Confocal live imaging analysis using oocytes from GFP-LC3 transgenic mice revealed that some vitrified-warmed oocytes showed green puncta which indicate autophagic activation. All oocytes of Group 1 and Group 2 show no puncta formation. Our results suggest that induction of autophagy may serve as an indicator of conditions of vitrification-warming process. Moreover, it offers the possibility that development of methods to modulate autophagic response during cryopreservation could improve efficacy of oocyte cryopreservation.
26.
2013.08 서비스 종료(열람 제한)
식욕조절과 신진대사에 관여하는 것으로 알려진 nesfatin-1/NUCB2는 시상하부 이외에 지방조직, 소화기관 및 생식기관에서도 발현되는 것이 보고되었다. 본 연구실에서도 nesfatin-1/NUCB2의 발현을 전 장기에서 조사한 결과, 뇌하수체, 심장, 폐, 소화기관 및 생식기관에서 다량 발현하고 있음을 확인할 수 있었다. 이러한 결과는 nesfatin-1/NUCB2가 체내 주요 장기의 발달 및 생리적 기능 조절에 관여할 가능성을 제시하고 있다. 이에 본 연구에서는 생쥐를 대상으로 배아에서 성체로 성장하는 동안 장기 내 nesfatin-1/NUCB2 발현 변화를 조사함으로써 nesfatin-1/NUCB2 발현과 장기의 발달과 어떤 연관성을 가지고 있는 지 알아보고자 하였다. 이를 위하여 생쥐 태자, 신생쥐, 성체 생쥐에서 성장에 따른 nesfatin-1/NUCB2의 발현 양상을 면역조직화학적 염색, qRT-PCR과 western blot 방법으로 조사하였다. 먼저 생쥐 태자에서 nesfatin-1/NUCB2 단백질 발현을 면역조직화학적 염색으로 확인한 결과, 뇌, 심장, 폐에서 다량 발현되는 것을 확인하였다. 또한, FITC-conjugated nesfatin-1을 이용하여 nesfatin-1 결합 부위를 확인한 결과에서도 nesfatin-1 발현 부위와 유사하게 뇌, 심장, 폐에서 염색되는 것을 확인할 수 있었다. qRT-PCR과 western blot 방법으로 신생쥐와 성체 생쥐 내 다양한 장기에서 nesfatin-1/NUCB2 발현량을 조사한 결과, 신생쥐에서는 다른 장기에 비해 심장과 폐에서 nesfatin-1/NUCB2 발현량이 높았으나, 성체로 성장하면서 발현량이 감소하는 경향을 보였다. 흥미롭게도 신생쥐의 신장에서는 nesfatin-1/NUCB2 발현이 거의 되지 않다가 성체가 되면서 다량 발현하는 양상을 보였다. 한편, 성체 생쥐의 신장에서 암컷과 수컷 사이의 nesfatin-1/NUCB2 발현 양상은 차이를 보이지 않았다. 이러한 결과를 종합해 볼 때 발생 초기에는 nesfatin-1/NUCB2의 발현이 신진대사에 필수적인 심장과 폐에서 많이 발현하고, 성장하면서 배설에 관여하는 신장에서 다량 발현하는 것으로 보아 nesfatin-1/NUCB2가 생쥐 성장 단계에서 특이적으로 장기의 발달과 생리적 기능을 조절할 수 있을 것으로 사료된다. 앞으로 심장, 폐 및 신장에서 다량으로 발현하고 있는 nesfatin-1/NUCB2가 어떤 기능을 가지고 있는 지 알아보기 위한 더 많은 연구가 요구된다.
27.
2013.08 서비스 종료(열람 제한)
Aquaporin5 (AQP5), a water channel plays an important role in the fluid homeostasis and cell volume control in epithelial cells. In an effort to understand fluid homeostasis in the oviduct, tissue specific expression of AQP 5 was examined together with hormonal regulation of AQP5 in the mouse oviduct. To understand the oviductal fluid homeostasis and its regulation by sex steroids, We examined AQP5 expression in mouse oviduct during developmental stage and estrous cycle, and in estrogen receptor α (ERα) knockout mice oviduct. In immature mouse oviduct, expression of AQP5 expression was examined after stimulation with gonadotropins. The effect of ERα agonist (PPT) and ERβ agonist (DPN) on the oviductal expression of AQP5 was examined in ovariectomized mouse. All samples were subjected to realtime-PCR and immunohistochemistry analysis. In oviduct epithelium, AQP5 was largely found in the apicolateral membrane and cytoplasm of ERα-positive non-ciliated cells but weakly expressed in the ciliated cells. Interstitial cells, muscle cells and blood vessels were also weakly positive for AQP5 immunoreactivity. In cyclic female mice oviductal AQP5 mRNA levels were the highest at estrous. In immature mouse oviduct AQP5 mRNA and epithelial immunoreactivity were increased by PMSG, and followed by a decrease after hCG. In ERα KO mice oviduct, AQP5 mRNA levels were significantly lower than those of WT females at diestrous stage. In immature and OVX mouse oviducts, AQP5 mRNA and epithelial immunoreactivity were significantly increased by E2 and PPT. Together, our results suggest the pivotal role of AQP5 in fluid secretion and absorption of water in non-ciliated cells in oviduct. AQP5 gene is tightly activated by estrogen – ERα signaling in non-ciliated cells in oviductal epithelium, mediating the effect of estrogen on gamete transport, fertilization and early embryo development via regulating the fluid homeostasis in oviduct.
28.
2013.08 서비스 종료(열람 제한)
DGCR8 is a RNA-binding protein working with DROSHA involved in critical processes for microRNA production in the nucleus. To understand function of miRNAs in the uterus, we have produced uterus-specific Dgcr8 conditional knock-out mice using two well-known Cre mouse models, anti-Mullerian hormone receptor 2 (Amhr2)-Cre and progesterone receptor (PR)-Cre. Dgcr8flox/flox;PRcre/+ mice were mainly analyzed and considered as uDgcr8 KO in this study unless otherwise indicated as Dgcr8flox/flox;Amhr2cre/+ mice. Morphological and histological analyses, embryo cultures, genomic DNA PCR, realtime RT-PCR and Western blotting were performed. uDgcr8 KO females bred with fertile males did not produce any offspring, suggesting that these mice are infertile. Vaginal smear analyses showed that these mice do not undergo estrous cycle, whereas Dgcr8flox/flox;Amhr2cre/+ mice exhibited regular estrous cyclicity. In vitro culture of 2-cell stage embryos and histological analyses for CL in uDgcr8 KO demonstrated that they can respond to gonadotrophins to ovulate healthy oocytes with comparable fertilization potentials as compared to those in Dgcr8flox/flox mice (Control). Gross morphology, histology, and weight of uteri of uDgcr8 KO mice were similar to those of control at 3-week-old stage. However, uterus become extremely thinner and shorter from 4-week-old stage onward. Histological examination showed significant reduction in gland numbers and stromal area from 4-week-old stage. Interestingly, this phenotype is reflected by significant increase of PR expression in the uteri of 4-week-old mice. In addition, stromal cell proliferation of uDgcr8 KO is severely impaired. BrdU incorporation experiments showed that while epithelial cells undergo proliferation by E2 treatment, stromal cells do not incorporate BrdU under the uterine conditions provided with E2+P4. Collectively, these results conclude that microRNAs are essential for uterine stromal cell proliferation in mice.
29.
2013.08 서비스 종료(열람 제한)
Estrogen is a primary steroid hormone to govern cell fates in the endometrium. It induces expression of a spectrum of genes such as early growth response 1 (Egr1) critical for dynamic change of uterine environments for embryo implantation. Egr1 belongs to the Egr family of zinc finger transcription factors consisting of 4 members (Egr1 to Egr4) that are co-expressed in many different tissues, suggesting that they may have some redundant functions. Bisphenol A (BPA) is a well-known endocrine disruptor with potent estrogenic activity on reproductive system. Here we have demonstrated molecular pathway(s) by which estrogen (17β estradiol, E2) and BPA regulates Egr1 in uterus. Eight-week-old female mice were ovariectomized (OVX) and rested for a week. Uteri of OVX mice treated with E2, BPA and/or progesterone (P4) were collected 2 h after hormone treatment unless otherwise indicated. ICI 182,780 [estrogen receptor (ER) antagonist] and RU486 [progesterone receptor (PR) antagonist] were pretreated 30 min before hormone treatment. Collected uteri were mainly utilized for RT-PCR, realtime-RT-PCR and Western blotting. Egr1 mRNA was rapidly induced with the highest level at 2h after E2 treatment and gradually decreased to basal levels at 12 h. Pretreatment of ICI 182,780 effectively inhibited E2-induced phosphorylation of ERK1/2 and AKT as well as Egr1 transcription. U0126 (a pharmacological ERK1/2 inhibitor), but not Watmannin (a AKT inhibitor), significantly blocked E2-induced Egr1 expression as well as ERK1/2 phosphorylation in the uterus. P4 effectively dampened E2-dependent Egr1 transcription, and its antagonistic effects were partially interfered with RU486 pretreatment. Interestingly, Egr2 and Egr3 showed similar hormone-dependent expression profiles to that of Egr1 in the uterus. BPA (100 mg/kg) was able to induce immediate expression of Egr1 as effective as E2 at 2 h after treatment. ICI 182,780 and P4 considerably reduced BPA-induced expression of Egr1. In addition, RU486 counteracted inhibitory action of P4 on BPA-induced expression of Egr1. While overall patterns of BPA- induced expression of Egr2 and Egr3 were similar to that of Egr1, BPA was not as effective as E2 for induction of Egr2 and Egr3. BPA could induce phosphorylation of ERK1/2 as well as expression of Egr family members, too. Collectively, these results strongly suggest that BPA as well as E2 can activate concurrent expression profiles of Egr family members via ER-ERK1/2 pathways in the uterus.
30.
2013.08 서비스 종료(열람 제한)
Early growth response 1 (Egr1) belongs to the Egr family of zinc finger transcription factors (Egr1 to Egr4) that regulates cell growth, differentiation, and apoptosis. Egr1(-/-) female mice are infertile due to anovulation resulting from luteinizing hormone β subunit (LHβ) deficiency. While it is clear that Egr1 is critical for LHβ transcription in the pituitary gland, function of Egr1 in uterus still remain unexplored. Uteri on various experimental conditions or days of pregnancy were collected for mRNA microarrays, realtime-RT-PCR, Western blotting, and histological analyses for immunofluorescence and BrdU staining. Egr1 and other Egr family members, Egr2 and Egr3 are highly expressed in the uterus on day 4 of pregnancy (Day 4). While ovulation, fertilization and embryo development normally occur in Egr1(-/-) mice treated with a superovulation regime to rescue LH deficiency, embryo implantation was completely failed. In addition to implantation failure, oviductal transport of embryos is also impaired in these mice. 17/24 Egr1(-/-) mice (71%) retained blastocysts in the oviduct as well as in the uterus of Egr1(-/-) mice on Day 4 whereas all Egr1(+/+) mice have them in the uterus. While serum levels of E2 and P4 in Egr1(-/-) mice on Day 4 were comparable to those of wildtypes, expression of E2 responsive genes which are expressed in luminal epithelium, such as Mucin 1 and lactoferrin, is aberrantly increased in Egr1(-/-) mice with embryos in the oviduct on Day 4. In contrast, P4 responsive genes such as Hoxa10 and amphiregulin are normally expressed in these mice. Collectively, these data suggest that Egr1 deficiency in the oviduct and uterus leads to estrogen hypersensitivity. BrdU incorporation experiments provided evidence that epithelial cells undergo hyperproliferation in Egr1(-/-) mice. This is consistent with microarray data that several key factors for cell cycle progression such as cyclin Ds and E2F1 are overexpressed in these mice. Furthermore, in the uteri of Egr1(-/-) mice treated with E2+P4, stromal cell proliferation is severely impaired and epithelial cells persistently proliferating. With respect to decidualization, Egr1 as well as Egr2 and Egr3 are induced immediately after decidualization stimuli were given. Although the responses were relatively less than those of wildtype mice, decidualization does occur in Egr1(-/-) mice. Relatively compromised decidualization responses seems to result from functional compensation of Egr2 and Egr3 in Egr1(-/-) deficient uteri. Collectively, our results show that Egr1 is a critical transcription factor to fine-tune estrogen responses via regulation of a spectrum of genes for embryo implantation in the uterus.
31.
2013.08 서비스 종료(열람 제한)
식욕조절과 신진대사에 관여하는 것으로 알려진 nesfatin-1/NUCB2는 시상하부 이외에 지방조직, 소화기관 및 생식기관에서도 발현되는 것이 보고되었다. 최근 본 연구실에서는 생쥐의 난소와 자궁에서 nesfatin-1/NUCB2가 발현되고, 생식주기에 따른 발현 양상이 다르다는 결과를 얻으면서 nesfatin-1/ NUCB2가 생식기능과 임신에 영향을 미칠 가능성을 제시했다. 그러나 현재까지 임신 유지와 배아 발달에 절대적으로 요구되는 태반에서 nesfatin-1/NUCB2가 발현되는 지 확인 된 바 없다. 따라서 본 연구에서는 먼저 생쥐의 태반에서 nesfatin-1/NUCB2의 발현을 확인하고, 아울러 임신기간 동안 태반에서 nesfatin-1/ NUCB2 발현량의 변화를 조사하고자 하였다. 먼저 qRT-PCR과 Western blot 방법으로 nesfatin-1/ NUCB2 발현을 조사한 결과, 다른 기관에 비해 태반에서 다량으로 nesfatin-1/NUCB2가 발현되는 것을 확인할 수 있었다. 아울러 면역조직화학적 염색 방법으로 태반에서 nesfatin-1 단백질을 발현하는 세포와 nesfatin-1 단백질이 결합할 수 있는 수용체를 가진 세포를 확인할 수 있었다. 또한, 태반에서 생산, 분비되는 nesfatin-1 단백질은 임신기간 중에 모체의 신진대사와 배아 발달에 영향을 미칠 것으로 판단하여 임신기간에 따른 태반에서의 nesfatin-1/NUCB2 발현량을 조사하였다. 이를 위하여 임신 5, 10, 15, 19일째 생쥐에서 태반을 적출하여 Western blot과 qRT-PCR 방법으로 nesfatin-1/NUCB2 발현량을 조사한 결과, 임신중기에 증가하다가 말기에 감소하는 경향을 확인할 수 있었다. 이러한 결과를 종합하여 볼 때 임신에 의해 새롭게 형성된 태반에서 다량으로 생산, 분비되는 nesfatin-1은 임신기간 중에 모체의 식욕조절과 신진대사에 영향을 미칠 수 있을 것으로 사료되며, 또한 배아와 태자 내 여러 장기에서 nesfatin-1 단백질의 결합 부위를 확인한 본 연구 결과를 고려해 볼 때, 태반에서 분비된 nesfatin-1이 혈관을 통해 배아와 태자에 전달됨으로써 생쥐 초기 발생과 성장 단계에서 중요한 역할을 할 것으로 보인다.
32.
2013.08 서비스 종료(열람 제한)
Copper Chloride (CuCl2)는 수계생물에 매우 강한 독소로 작용한다. 이에 한국 토착 양서류인 무당개구리(Bombina orientalis)의 배아를 이용하여 CuCl2의 독성에 대하여 알아보고자 하였다. 배아 발생 독성 실험, Trypan blue 염색, 동물극 분리체의 예정 중배엽 유도, MTT 분석, real-time PCR을 수행하였다. 결과로, 생존율에 근거한 반수치사농도는 6.50 μM, 기형율에 근거한 반수기형농도는 2.13 μM로 확인되었다. 주요 기형패턴으로는 head malformation, bent tail이 관찰되었고, 3 μM 이상의 농도에서 두부와 미부의 유의적인 성장 저해가 관찰되었다. 10 μM 이상의 농도에서 배아 전체의 세포사멸이 이루어짐을 확인하였다. 동물극 분리체의 길이신장과 길이/폭 비율이 1 μM 이상의 처리군에서 유의적인 감소를 보였다. MTT 분석 결과, 10 μM 이상의 농도에서 유의적인 감소를 보였다. 중배엽 관련 유전자 중 goosecoid, noggin, chordin, follistatin가 1 μM 이상의 처리군에서 유의적인 감소를, epidermal keratin가 10 μM 이상의 농도에서 유의적인 증가를 보였다. Apoptosis 관련 유전자 중 BAK와 BAX는 각각 10 μM 이상의 농도에서 유의적인 감소와 증가를 보였다. 이 연구를 통하여, CuCl2가 무당개구리 배아의 중배엽 관련 유전자의 발현을 저해함으로서, 발생 과정의 장애를 유발하는 것으로 사료된다.
33.
2013.08 서비스 종료(열람 제한)
Pluripotent stem cells are cells that have a self-renewal capacity and the ability to differentiate into all lineages. These cells can be divided into naive- and primed-state pluripotent stem cells according to their pluripotent state. Only the naive state comprises a full pluripotency or ground state that contributes to germ-line transmission. Naive states are found in specific permissive strains or species, such as 129, C57BL/6 and BALB/C in mice. However, a number of attempts have been made to derive naive-state pluripotent stem cell lines from non-permissive species, including humans and pigs, using various exogenous factors including GSK3β and MEK inhibitors (2i), LIF, hypoxic conditions and up-regulation of Oct4 or Klf4. Therefore, in this study we investigated whether a naive pluripotent stem cell line could be derived from porcine embryonic fibroblasts (PEFs) via previously reported factors. Our mouse embryonic stem cell (mESC)-like cell lines expressed the pluripotency markers Oct4, Sox2 and Nanog and a stable mESC-like morphology for more than 50 passages. In addition, these cell lines could be sequentially reprogrammed into mESC-like induced pluripotent stem (iPS) cells from secondary or tertiary fibroblast-like cells differentiated from mESC-like iPS cells by addition of doxycycline (DOX), LIF and 2i. Our results suggest that, as a non-permissive species, porcine stem cells can be induced into mESC-like iPS cells from PEFs by various exogenous factors, including continuous transgene expression, 2i and LIF. However, further work that aims to effectively induce the activation of endogenous transcription factors is necessary to derive authentic naive-state pluripotent porcine stem cells.
34.
2013.08 서비스 종료(열람 제한)
Testicular expression of CLDN11 (claudin-11), a tight junction protein was examined together with spermatogenesis and circulating testosterone levels in Korean soft-shelled turtle (Pelodiscus maackii). Spermatogenesis started during the breeding season in May and peaked in August when the breeding season ended. Spermiation started in July and peaked in October, showing the typical pattern of spermatogenesis in temperate zone reptiles. Deduced amino acid sequences of P. maackii CLDN11 was highly homologous to those of avian and mammals, suggesting the conserved nature of CLDN11 in amniotes. During the non-breeding season when the spermatogenesis was active and circulating testosterone levels elevated, testicular CLDN11 mRNA and protein (19kDa) levels were high. Strong, wavy CLDN11 immunoreactive strands run parallel to basement membrane in the basal part of the seminiferous epithelium, delaminating the spermatogonia and early spermatocytes in the open compartment. Otherwise, CLDN11 was found beneath the early spermatocytes and in the Sertoli cell cytoplasm perpendicular to basement membrane. In double labeling experiment, punctate ZO-1 immunoreactivity was found within the CLDN11 strands run parallel to the basement membrane as well as at the most periphery of seminiferous epithelium where ZO-1 and CLDN11 in Sertoli cells were mostly cytoplasmic and perpendicular to basement membrane. Together, recruit of CLDN11 and ZO-1 to the inter-Sertoli TJs was tightly coupled with spermatogenic stage. At the breeding season when the circulating testosterone levels and spermatogenic activity remained low, testicular CLDN11 mRNA and protein levels were low. CLDN11 was found at apicolateral contacts between adjacent Sertoli cells devoid of the postmeiotic germ cells, suggesting that CLDN11 between adjacent Sertoli cells also participates in the maintenance of seminiferous lumen. In P. maackii testis, CLDN11 as a structural element of the blood-testis barrier dynamically changed according to spermatogenic activity and circulating androgen levels. This is the first study on the CLDN TJs at the BTB in reptilian testis.
35.
2013.08 서비스 종료(열람 제한)
The spermatogenesis and oogenesis-specific helix-loop-helix transcription factor 2 (Sohlh2) is exclusively expressed in germ cells of male and female gonad. Sohlh2 acts as a transcriptional factor via its specific DNA binding site, E-box to regulate target genes such as Lhx8, Zp genes, Ngn3. Sohlh2 localize in the female oocyte and in the male spermatogonia. In recent studies, Sohlh2 knockout (KO) mice occurs abnormal spermagoenesis resulting in sperm defect. Sohlh2 KO male mice were infertility due to disruption of numerous gene expression. However, the gene profiles of Sohlh2 KO testes were not characterized and the regulatory mechanism of Sohlh2 was poorly understood. In this study, we analyzed the gene profiles and examined the possible mechanism of Sohlh2 in the spermatogenesis. First, we performed histological analysis such as Hematoxylin and eosin stain, Tunel assay, and Immunohistochemistry to show the onset of disruption of Sohlh2 KO testes. These results showed that Sohlh2 KO testes have atrophic seminiferous tubule due to increased apoptosis at 2 weeks old. And then we analyzed the whole gene profiles in the Sohlh2 KO testes at 2 weeks old. We found that 91 genes were regulated at least 5-fold in knockout testes. Among these, several genes are involved in meiotic process. Quantitative-PCR results are shown that several meiotic factors are significantly down-regulated in 2-weeks-old Sohlh2 KO testes compared with that of wild type mice. Through chromosome spreading assay, we observed that the formation of synaptonemal complex of homologous chromosome during the meiosis in Sohlh2 KO testes was not completed. These suggest that Sohlh2 is critical for regulation of numerous factors including meiotic factors either directly or indirectly. Therefore, mis-regulation of meiotic factors at prophase I of meiosis during spermatogenesis leads to disruption of spermatogenesis in Sohlh2 KO testes. Further studies are needed to look at the mechanism of Sohlh2 for regulation of target genes in detail.
36.
2013.08 서비스 종료(열람 제한)
Human mesenchymal stem cells are known that multipotent stromal cells have the ability to divide asymmetrically, differentiate into many tissue types, and modulate cellular fate or function. Previous reports have proved that direct or indirect effects of mesenchymal stem cells in damaged cells or tissue were able to contribute to regenerative remodeling. One of incurable diseases, vitiligo is a depigmenting skin disorder resulting from the loss of melanocytes in the epidermis. Although vitiligo is a common disorder with a frequency of 0.1~2% in population, it still remains incurable and recurrent. Up to now, various treatment methods has been available for vitiligo therapy. Especially, transplantation of melanocytes (MCs) cultured with keratinocytes (KCs) is well-known therapy in clinic. We have recently reported functional role of adipose-derived stromal cells (ASCs) could assist MCs growth and maintenance of immature MCs. Therefore, the present study investigated whether the influence of ASCs may be elevated a transplantation yield of MCs in vivo. Transplantation was accomplished by syringe injection or grafting after dermabrasion. The procedure of dermabrasion is a mechanically invasive skin planning method and may be to help settle adequate location of transplanted cells to therapy. To improve an efficacy of cell transplantation, various additives or conditions of ratio were compared in vivo. These data was concluded that mixture of MCs and ASCs in the determined condition was improved engraftments of melanocytes for patients with vitiligo.
37.
2013.08 서비스 종료(열람 제한)
Recently, human mesenchymal stem cells (MSCs) are attracting attention as a useful source for regenerative therapy. Controlled production of cell therapy requires the establishment and management of an accurate isolation, characterization and monitoring for quality assurance of developing MSCs mediated. In this study, we were confirmed maintenance of potency of isolated and cultured human umbilical cord (hUC)-MSCs during ex vivo expansion or after cryopreservation. Expression of their cell specific marker was analyzed by flow cytometry and the differentiation potency was confirmed by guided differentiation of adipocyte, osteocyte, chondrocyte and hepatocyte after expanding over 15 doublings in vitro. Safe production of developing a cell therapy was proved by testing for microbial, mycoplasma, endotoxin, and adventitious agents. Also stability of cells in cultivation, preservation and/or differentiation was determined chromosomal assay. In developing using hUC-MSCs, cells showed an accurate isolation and stable expansion in ex vivo condition. The results of several management assay showed that the stem cell marker expression of CD31, CD34 and CD45 were under 10%, however CD90 was over 90% by FACS analysis. Any contamination and mutation in all tests weren't detected in specific points for safe or stable production of hMC-MSCs. Also the proliferation and differentiation potency maintains during in vitro culture and after cryopreservation of hUC-MSCs. These results could be used as standard methods of maintenance of hUC-MSCs for cell therapy products and clinical application.
38.
2013.08 서비스 종료(열람 제한)
One of the most effective and safe therapeutic methods for treating vitiligo, mixed autologous keratinocytes (KCs) and melanocytes (MCs) cultures have been used for autologous cell transplantation. However, the present transplantation method is faced with a problem that may require a large amount of skin tissue and keratinocytes have limited culture potency. We have found previously that human adipose derived stromal cells (hASCs) from aspirated fat tissue could be used in place of KCs and sufficient amounts of hASCs for transplantation could be obtained by small amount of aspirated fat tissue. The present investigation was determined the effect of ASCs on ex vivo expansion MCs for transplantation. In addition, we examined for a preservation conditions of MCs which have reported low recovery rates and a slowdown in growth after cryopreservation. Various conditions including ASCs ratio, incubation period, and additive materials for MCs cultivation was determined to improve the expansion ability of MCs. The growth rate of MCs colony was elevated 6.85 folds compared the previous conditions. These MCs showed a specific expression of immature melanocyte protein, Trp-2, but did not express the mature melanocyte proteins and markers (c-kit, CD133, and etc.) of mesenchymal stem cells that represents in ASCs feeder. Results in cryopreservation experiments were determined a preservation medium for MCs showing an increased recovery rates after thawing. The characteristics of MCs after cryopreservation using a designed medium were indicated consistent morphology and immunophenotype. In conclusion, ASCs as a feeder could be used in place of keratinocytes for ex vivo expansion of MCs. For clinical trial for vitiligo patients, efficiency experiments in preclinical state should be followed.
39.
2013.08 서비스 종료(열람 제한)
Biological resources including proteins, cells, and tissues were confronted with both safe and stable preservation for practical use in biotechnological industry. Particularly, cell therapy for regenerative engineering is needed to restricted regulation and accurate preservation. Therefore, this study was investigated improved conditions of mesenchymal stem cells from human umbilical cord (hUCs) or aspirated adipose tissues (hATs) for clinical cell banks. Both cells were isolated according to standard operation procedure of Hurim BioCell Inc. and analyzed the inherent characteristics in passage 4. To compare the ability of experimental groups after cryopreservation, proliferation ability using calculated values and cytomorphological patterns of each experimental step were analyzed. Also proteins such as ice-binding protein or caspase inhibitor were applied to add the preservation medium of hUCs or hATs. Result of preservation solution with 20% serum was considered a positive group. Recovery rate and expansion results showed specific dosage and cell type-dependent differences in the experimental group. Chromosomal stability and multipotency of hUCs or hATs were expressed stable pattern after cryopreservation using advanced medium. As a result, these additives could be substituted for xenogenic sources in banking of hUCs or hATs.
40.
2013.08 서비스 종료(열람 제한)
Mesenchymal stem cells (MSCs) are considered to be attractive approaching in gene or drug delivery for cancer therapeutic strategies. In this study, the ability and feasibility of human bone marrow derived MSCs expressing the cytosine deaminase (CD)/5-Fluorocytosin (5-FC) prodrug was evaluated to target human osteosarcoma cell line Cal-72. At first, the fibroblast-like cells were successfully obtained from human bone marrow and demonstrated that they contained full of stem characteristics by the ability of differentiation into adipocyte/osteocyte and expression of typical mesenchymal markers CD90, CD44, while negative for CD34 and CD133 markers. We established the stable CD-expressing MSCs cell line (CD-MSCs) by transfection of pEGFP-C3 containing cytosine deaminase::uracil phos-phoribosyltransferase (CD::UPRT) gene into MSCs, and confirmed that the manipulated MSCs still remained full characteristics of multipotent cells and shown migration toward human osteosarcoma cancer cells Cal-72 as high as origin MSCs. Based on bystander effect, the therapeutic CD-MSCs significantly augmented the cytotoxicity on cancer cell Cal72 in either direct co-culture or conditioned medium in the presence of 5-FC. Moreover, in osteosarcoma cancer- bearing mice, the therapeutic CD/5-FC MSCs showed the inhibition of tumor growth compared with control mice which was s.c injected with only Cal72. Our findings suggest that these therapeutic CD-MSCs may be suitable and viable cellular vehicles for targeting human osteosarcoma cancer.
1 2 3 4