Background : Although the inhibitory effect of mistletoe on cancer cell growth has been reported, the underlying mechanisms to explain its anti-proliferative activity are not fully studied. Thus, we elucidated the potential molecular mechanism of the branch from taxillus yadoriki (TY) parasitic to Neolitsea sericea (NS) (TY-NS-B) for the anti-proliferative effect.
Methods and Results : In comparison of anti-proliferative effect of TY from the host trees such as Cryptomeria japonica (CJ), Neolitsea sericea (NS), Prunus serrulata (PS), Cinnamomum camphora (CC) and Quercus acutissima (QA), TY-NS showed higher anti-cell proliferative effect than TY-CJ, TY-PS, TY-CC or TY-QA. In addition, the anti-proliferative effect of branch from TY from all host trees was better than leaves. Thus, we selected the branch from Taxillus yadoriki parasitic to Neolitsea sericea (TY-NS-B) for the further study. TY-NS-B inhibited the cell proliferation in the various cancer cells and downregulated cyclin D1 protein level. MG132 treatment attenuated cyclin D1 downregulation of cyclin D1 protein level by TY-NS-B. In addition, TY-NS-B increased threonine-286 (T286) phosphorylation of cyclin D1, and the mutation of T286 to alanine (T286A) blocked cyclin D1 proteasomal degradation by TY-NS-B. But the upstream factors related to cyclin D1 degradation such as ERK1/2, p38, JNK, GSK3β, PI3K, IκK or ROS did not affect cyclin D1 degradation by TY-NS-B. However, LMB treatment was observed to inhibit cyclin D1 degradation by TY-NS-B, and T286A blocked cyclin D1 degradation through suppressing cyclin D1 redistribution from nucleus to cytoplasm by TY-NS-B. In addition, TY-NS-B activated CRM1 expression.
Conclusion : Our results suggest that TY-NS-B may suppress cell proliferation by downregulating cyclin D1 protein level through proteasomal degradation via T286 phosphorylation-dependent cyclin D1 nuclear export. These findings will provide the evidence that TY-NS-B has potential to be a candidate for the development of chemoprevention or therapeutic agents for human cancer.
Background : Vaccinium oldhamii is a Korean native tree, which is deciduous and shrub tree with broad leaf. It was used primarily for edible or medicinal purposes for bladder infection in Korea and China. In addition, it has been reported to be used for treating inflammation, gonorrhea, vomiting, diarrhea and eruption. In this study, we evaluated the anti-inflammatory effect of the branch of Vaccinium oldhamii and elucidated the potential mechanisms in LPS-stimulated RAW264.7 cells.
Methods and Results : In the comparative experiment for the inhibitory effect of the plant parts from Vaccinium oldhamii such as fruits, leaves and branches on NO production, we observed that the branch extracts showed the highest inhibitory effect. Thus, the further study was performed using the branch of Vaccinium oldhamii (VOB). VOB did not affect iNOS expression but significantly IL-1β expression, which indicates that VOB may block NO production through the inhibition of IL-1β expression. In elucidation of the potential mechanisms for anti-inflammatory effect, VOB inhibited the degradation of IκB-α which results in the inhibition of p65 nuclear accumulation and NF-κB activation. In addition, VOB suppressed the activation of ERK1/2, p38 and JNK.
Conclusion : These results indicate that VOB may exert anti-inflammatory activity through the inhibiting NF-κB and MAPK signaling. From these findings, VOB has potential to be a candidate for the development of chemoprevention or therapeutic agents for the inflammatory diseases.
Background : Hibiscus syriacus is a widely cultivated ornamental shrub, found throughout eastern and southern Asia. The root of H. syriacus has been used in Asian folk medicine as a fungicide, antipyretic, and anthelmintic in the treatment of dysentery, eczema, tinea, and scabies. In this study, we evaluated the anti-inflammatory effect of 70% ethanol extracts of root from Hibiscus syriacus (RHS-E70) and elucidated the potential mechanisms in LPS-stimulated RAW264.7 cells.
Methods and Results : RHS-E70 dose-dependently suppressed nitric oxide (NO) production in LPS-stimulated RAW264.7 cells. In addition, RHS-E70 attenuated LPS-mediated overexpression of iNOS and IL-1β. In elucidation of the potential mechanisms for anti-inflammatory effect, RHS-E70 inhibited the phosphorylation and subsequent degradation of IκB-α, which results in the inhibition of p65 nuclear accumulation and NF-κB activation. In addition, RHS-E70 suppressed the activation of ERK1/2 and p38, which results in the inhibition of ATF2 phosphorylation and subsequent ATF2 nuclear accumulation.
Conclusion : These results indicate that RHS-E70 may exert anti-inflammatory activity through the inhibiting NF-κB and MAPK signaling. From these findings, RHS-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for the inflammatory diseases.
Background : Ginseng (Panax ginseng) has been reported to exert an anti-inflammatory activity in a variety of inflammatory. However, inflammation-regulatory activity of wood-cultivated ginseng has not been thoroughly evaluated. In this study, we evaluated the anti-inflammatory effect of wood-cultivated ginseng and elucidated the potential mechanisms in LPS-stimulated RAW264.7 cells.
Methods and Results : Inhibitory effects of the old wood-cultivated ginseng (WCG-O), young wood-cultivated ginseng (WCG-Y) and ginseng (G) on NO and PGE2 production were examined using the Griess assay and ELISA kit. Suppressive effects of WCG-O on inflammatory gene expression, transcriptional activation, and inflammation signaling events were investigated using Western blot analysis, RT-PCR analysis and luciferase activity reporter gene assay. WCG-O dose-dependently suppressed nitric oxide (NO) and Prostaglandin E2 (PGE2) production in LPS-stimulated RAW264.7 cells. In addition, WCG-O attenuated LPS-mediated overexpression of iNOS and COX-2. In addition, WCG-O blocked the expression of TNF-α and IL-1β in LPS-stimulated RAW264.7 cells. In elucidation of the potential mechanisms for anti-inflammatory effect, WCG-O inhibited the activation of IκK-α/β, the phosphorylation of IκB-α, and degradation of IκB-α, which results in the inhibition of p65 nuclear accumulation and NF-κB activation. In addition, WCG-O suppressed the activation of ERK1/2, p38 and JNK, which results in the inhibition of ATF2 nuclear accumulation.
Conclusion : These results indicate that WCG-O may exert anti-inflammatory activity through the inhibiting NF-κB and MAPK signaling. From these findings, WCG-O has potential to be a candidate for the development of chemoprevention or therapeutic agents for the inflammatory diseases.
Background : Mistletoe has been used as the herbal medicine to treat hypertension, diabetes mellitus, inflammation, arthritis and viral infection. In this study, we evaluated the anti-inflammatory effect of extracts of branch from Taxillus yadoriki being parasitic in Neolitsea sericea (TY-NS-B) using in vitro model.
Methods and Results : TY-NS-B significantly inhibited LPS-induced secretion of NO and PGE2 in RAW264.7 cells. TY-NS-B was also observed to inhibit LPS-mediated iNOS COX-2 expression. In addition, TY-NS-B attenuated production of inflammatory cytokines such as TNF-α and IL-1β induced by LPS. TY-NS-B blocked LPS-mediated inhibitor of IκB-α, and inhibited p65 translocation to the nucleus and NF-κB activation. Furthermore, TY-NS-B reduced the phosphorylation of MAPKs such as p38 and JNK, but not ERK1/2. In addition, TY-NS-B increased ATF3 expression and ATF3 knockdown by ATF3 siRNA attenuated TY-NS-B-mediated inhibition of pro-inflammatory mediator expression.
Conclusion : Collectively, our results suggest that TY-NS-B exerts potential anti-inflammatory effects by suppressing NF-κB and MAPK signaling activation, and increasing ATF3 expression. These findings indicate that TY-NS-B could be further developed as an anti-inflammatory drug.
In this study, we evaluated anti-inflammatory effect of biji in LPS-stimulated RAW264.7 cells. Biji inhibited the generation of NO and PGE2 through the suppression of iNOS and COX-2 expression. In addition, biji attenuated the expression of TNF-α and IL-1β induced by LPS. Biji blocked LPS-mediated IκB-α degradation and subsequently inhibited p65 nucleus accumulation in RAW264.7 cells, which indicates that biji inhibits NF-κB signaling. In addition, biji suppressed p38 phosphorylation induced by LPS. Our results suggests that biji may exert anti-inflammatory activity through blocking the generation of the inflammatory mediators such as NO, PGE2, iNOS, COX-2, TNF-α and IL-1β via the inhibiting the activation of NF-κB and p38. From these findings, biji has potential to be a candidate for the development of chemoprevention or therapeutic agents for inflammatory diseases.
There increasing demand for technologies that are capable of producing heat and electric energy by burning fuels such as solid refuse fuel (SRF) and biomass to mitigate the effects of greenhouse gas emissions from fossil fuels and global warming in the field of thermal power generation. In particular, conversion of SRF into energy (Waste to Energy) is the promising technology with high economic and social benefits. The high temperature corrosion of the heat exchange tube is the most important factor that affects the economic deterioration of a circulating fluidized bed boiler using solid refuse fuel, due to operating time decrease and the periodic shutdown during plant operation. The purpose of this study was to examine the high temperature corrosion characteristics of boiler superheater tubes. The change of corrosion characteristics according to the temperature and alkali chloride salt can be investigated by analyzing the morphology of the surface and the microstructure of specimen cross-section and examining the changes in the physical and chemical properties. The degree of corrosion increased as the temperature increased and the weight of the alkali chloride specimen deposit decreased due to the volatilization of the metal chloride compound above 700°C. Deposits of KCl were found to accelerate corrosion by destroying the oxide layer and forming potassium compounds.
본 연구의 목적은 식공간 내 식물활용이 마케팅 효과에 미치는 영향을 알아보는 것이었으며 설문지를 활용해 식공간 이용자의 특성을 분석 하였다. 성별에 따른 그룹에서 독립표본 t검정을, 연령과 소득에 따른 그룹은 일원배치 분산분석을 실행하였고 식물 관심도와 식물장식 선 호도에 대해 성별, 연령, 소득에 따라 통계적으로 유의한 차이가 나타났다. 여성이 남성보다 식물 관심도가 높았고 50대 이상의 사람들이 식물 관심도가 높았다. 소득에 따라서는 그룹 내에서 월수입이 가장 높은 400만원 이상의 사람들이 식물 관심도가 높았다. 식물소재는 남 성은 잎 위주의, 여성은 꽃 위주의 소재를 선호하는 것으로 나타났고 30대-50대 이상의 그룹에서 연령이 높을수록 잎 위주의 소재를, 낮을 수록 꽃 위주의 소재를 선호하는 경향이 나타났다. 생화와 조화의 선호도를 분석한 결과, 생화를 선호하는 비율(73.6%)이 가장 높았고 연 령이 높을수록 그 경향이 더욱 분명하게 나타났다. 생화를 선호하는 이유로 가장 높은 평균 점수를 보인 것은 ‘생명을 느낄 수 있다’ 였으며 ‘자연의 향을 맡을 수 있다’에 대한 남녀의 응답에서 통계적인 유의한 차이가 나타났다. 생화를 선호하지 않는 이유에서 가장 높은 평균 점 수가 나타난 것은 ‘쉽게 시든다’였으며 통계적인 유의한 차이를 보인 것은 ‘비용이 많이 들 것 같다’에 대한 소득별 그룹의 응답이었다. 생 화에 대한 사람들의 긍정적인 반응과 삶의 질에 대한 관심은 차별화된 마케팅을 목적으로 할 때 공간장식의 요소로써 매력적인 소재가 될 수 있을 것이라고 판단되었다.
시판되고 있는 상황버섯과 영지버섯 차류 제품의 이화학적 특성과 β-glucan 함량, 항산화 활성 및 항산화 성분 함량을 조사하고 이들 간의 상관성을 분석하였다. pH는 4.43-7.05의 범위를 보였으며, 상황버섯 액상차2(PL2)와 영지버섯 액상차1(GL1)이 가장 낮은 값을 보였다(p<0.05). Hunter 색차계로 측정한 결과 L 값은 41.76-55.02, a 및 b 값은 -0.49-5.06, 17.41-28.32의 범위를 보였다. 가용성 고형분 함량은 0.40-0.73 °Brix의 범위를 보였으며, 증발잔류물은 62.04-258.84 mg/100 g의 범위로 PL2와 GL1이 가장 높은 값을 나타내었다(p<0.05). β-Glucan 함량은 15.51-62.32 mg%의 범위를 나타내었으며, GL1과 PL2가 각각 62.32 mg%, 42.35 mg%로 높은 함량을 나타내었다(p<0.05). DPPH 라디칼 소거 활성에서는 32.63-367.81 μM GAE, FRAP에서는 321.86-1,035.19 μM TE, ABTS 라디칼 소거활성에서는 703.50-1,091.83 μM TE의 범위를 나타내었으며, 총페놀 함량은 286.56-916.00 μM GAE, 총플라보노이드 함량은 85.33-635.33 μM CE의 범위를 보여 전반적으로 PL2와 GL1이 항산화능이 높은 것으로 나타났다(p<0.05). 총페놀 함량과 총플라보노이드 함량은 DPPH 라디칼 소거 활성, FRAP 및 ABTS 라디칼 소거 활성과 모두 높은 상관성(r=0.7298-0.9743)을 보인 반면, β-glucan 함량은 항산화 활성 모두와 비교적 낮은 상관성(r=0.3146-0.6663)을 보였다. 전반적으로 액상차가 침출차에 비해 β-glucan 함량 및 항산화능이 우수하였다.