검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 322

        21.
        2023.05 구독 인증기관·개인회원 무료
        Employees of nuclear licensees have to take the education for radiological emergency preparedness, as prescribed by presidential Decree. The Korea Atomic Energy Research Institute (KAERI), as an educational institution designated by the Nuclear Safety and Security Commission (NSSC), has been conducting field-oriented workplace education. This aims to enhance understanding of radiological emergencies that may occur in nuclear facilities and to strengthen response capabilities to prevent and deal with accidents in the event of radiation emergencies or radioactive disasters. To accomplish these educational goals, a paradigm shift from the previous theory-oriented curriculum to a participatory curriculum with high field applicability is needed to strengthen the ability to respond to nuclear or radiological emergencies. In addition, a feedback system is required to manage the quality of education and improve the curriculum. In this regard, KAERI sought ways to revitalize the education to strengthen the emergency response competencies. Based on the concept of the Systematic Approach to Training (SAT) methodology, which is recommended by the International Atomic Energy Agency (IAEA) for the development and implementation of education and training for NPP personnel, an educational model and its feedback system were developed. Then, a field-oriented participatory curriculum operation and satisfaction survey were conducted to evaluate the educational effectiveness. Lastly, the survey results were discussed in a critique session to point out weaknesses and indicate areas for improvement, and then were used as data for educational quality assurance. This paper introduces the composition and effectiveness of KAERI’s SAT-based education model based on its recent three years of experience.
        22.
        2023.05 구독 인증기관·개인회원 무료
        Since high-level radioactive wastes contain long-lived nuclides and emit high energy, they should be disposed of permanently through a deep geological disposal system. In Korea, the first (2016.07) and the second (2021.12) basic plans for the management of high-level disposal systems were proposed to select sites for deep geological disposal facilities and to implement business strategies. Leading countries such as Finland, Sweden and France have developed and applied safety cases to verify the safety of deep geological disposal systems. By examining the regulatory status of foreign leading countries, we analyze the safety cases ranging from the site selection stage of the deep geological disposal system to the securing of the permanent disposal system to the investigation, analysis, evaluation, design, construction, operation, and closure. Based on this analysis, we will develop safety case elements for long-term safety of deep geological disposal systems suitable for domestic situation. To systemically analyze data based on safety cases, we have established a database of deep geological disposal system regulations in leading foreign countries. Artificial intelligence text mining and data visualization techniques are used to provide database in dashboard form rather than simple lists of data items, which is a limitation of existing methods. This allows regulatory developers to understand information more quickly and intuitively and provide a convenient interface so that anyone can easily access the analyzed data and create meaningful information. Furthermore, based on the accumulated bigdata, the artificial intelligence learns and analyzes the information in the database through deep learning, and aims to derive a more accurate safety case. Based on these technologies, this study analyzed the legal systems, regulatory standards, and cases of major international leading countries and international organizations such as the United States, Sweden, Finland, Canada, Switzerland, and the IAEA to establish a database management system. To establish a safety regulation base suitable for the domestic deep geological disposal environment, the database is provided as data to refer to and apply systematic information management on regulatory standards and regulatory cases of overseas leading countries, and it is expected that it will play a key role as a forum for understanding and discussing the level of safety of deep geological disposal system among stakeholders.
        23.
        2023.05 구독 인증기관·개인회원 무료
        In Korea, borated stainless steel (BSS) is used as a storage rack in spent fuel pools (SFP) to maintain the nuclear criticality of spent fuels. As the number of nuclear power plants and the corresponding amount of spent fuels increased, the density in SFP storage rack also increased. In this regard, maintaining subcriticality of spent nuclear fuels became an issue and BSS was selected as the structural material and neutron absorber for high density storage rack. Since it is difficult to replace the storage rack, corrosion resistance and neutron absorbency are required for long period. BSS is based on stainless steel 304 and is specified in the ASTM A887-89 standard depending on the boron concentration from 304B (0.20-0.29% B) to 304B7 (1.75-2.25% B). Due to the low solubility of boron in austenitic stainless steel, metallic borides such as (Fe, Cr) 2B are formed as a secondary phase. Metallic borides could cause Cr depletion near it, which could decrease the corrosion resistance of the material. In this paper, the long-term corrosion behavior of BSS and its oxide microstructures are investigated through accelerated corrosion experiment in simulated SFP conditions. Because the corrosion rate of austenitic stainless steel is known to be dependent on the Arrhenius equation, a function of temperature, the corrosion experiment is conducted by increasing the experimental temperature. Detail microstructural analysis is conducted using a scanning electron microscope, transmission electron microscope and energy dispersive spectrometer. After oxidation, a hematite structure oxide film is formed, and pitting corrosion occurs on the surface of specimens. Most of the pitting corrosion is found at the substrate surface because the corrosion resistance of the substrate, which has low Cr content, is relatively low. Also, the oxidation reaction of B in the secondary phase has the lowest Gibbs free energy compared to other elements. Furthermore, oxidation of Cr has low Gibbs free energy, which means that oxidation of B and Cr could be faster than other elements. Thus, the long-term corrosion might affect the boron content and the neutron absorption ability of the material. Using boron’s high cross-section for neutrons, the neutron absorption performance of BSS was evaluated through neutron transmission tests. The effect of the corrosion behavior of BSS on its neutron absorption performance was investigated. Samples simulated to undergo up to 60 years of degradation before corrosion through accelerated corrosion testing did not show significant changes in the neutron shielding ability before and after corrosion. This can be explained in relation to the corrosion behavior of BSS. Boron was only leached out from the secondary phase exposed on the surface, and this oxidized secondary phase corresponds to about 0.17% of the volume of the total secondary phase. This can be seen as a very small proportion compared to the total boron content and is not expected to have a significant impact on neutron absorption performance.
        24.
        2023.05 구독 인증기관·개인회원 무료
        CANDU Spent Fuel (CSF) dry storage system, SILO, has been operated from 1992 at Wolsung under 50 year operating license. As of 2023, this system has been operated for over 30 years and its licensed remaining operation time is less than 20 years. When it faces the final stage of operation, it has only two options; moving to a centralized away-from-reactor storage or extending its license atreactor. These two options have an inevitable common duty of confirming the CSF integrity by a “demonstration test”. Since the degradation of CSF and structural materials in the SILO are critically dependent on temperature, two important goals of the ‘DEMO test’ were set as follows. 1. Design of ‘DEMO SILO’: Development of internal monitoring technology by transforming SILO design. 2. Accurate measurement and evaluation of the three-dimensional temperature distribution in the ‘DEMO SILO’ Based on operating real commercial SILO dimension, a conceptual “DEMO SILO” design has been developed from 2022. Because, unlike with commercial Silo, ‘Demo Silo’ must be disassembled and assembled, and have penetration holes. Safety evaluation technologies like structural, thermal and radiation protection analysis also have been developed with design work. ‘Demo SILO’ should evaluate an accurate 3D temperature distribution with minimal number of thermocouples and penetration holes to avoid disruption of internal flow and temperature distribution. For this reason, a ‘Best Estimate Thermal-Hydraulics evaluation system for SILO’ is under development and it will be essential for ensuring temperature prediction accuracy. Construction of a full-scale test apparatus to validate this technology will begin in 2024. In order to supply power to many heaters and monitor temperature gradient inside of this apparatus, it has modular design concept by dividing its whole body to axial 9 sub-bodies which looks like a donut containing a basket at center position.
        29.
        2023.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Various linear system solvers with multi-physics analysis schemes are compared focusing on the near-field region considering thermal-hydraulic-chemical (THC) coupled multi-physics phenomena. APro, developed at KAERI for total system performance assessment (TSPA), performs a finite element analysis with COMSOL, for which the various combinations of linear system solvers and multi-physics analysis schemes should to be compared. The KBS-3 type disposal system proposed by Sweden is set as the target system and the near-field region, which accounts for most of the computational burden is considered. For comparison of numerical analysis methods, the computing time and memory requirement are the main concerns and thus the simulation time is set up to one year. With a single deposition hole problem, PARDISO and GMRESSSOR are selected as representative direct and iterative solvers respectively. The performance of representative linear system solvers is then examined through a problem with an increasing number of deposition holes and the GMRES-SSOR solver with a segregated scheme shows the best performance with respect to the computing time and memory requirement. The results of the comparative analysis are expected to provide a good guideline to choose better numerical analysis methods for TSPA.
        4,000원
        32.
        2022.10 구독 인증기관·개인회원 무료
        In this research, KPS manufactured Full System Decontamination (FSD) equipment, which is consisted of Oxidizing Agent Manufacturing System (OAMS), Chemical Injection System (CIS), RadWaste Treatment System (RWTS), Chemical Waste Decomposition & Treatment System (CWDS) and conducted demonstration test to prepare Decontamination and Decommissioning (D&D) project of Kori nuclear power plant in Korea. Each equipment of FSD was modularized due to the limited size of equipment hatch of Kori nuclear power plant. To simulate the expected circumstances in nuclear power plant such as usage of heater or position of each equipment, additional equipment was used. The chemical concentration and flow rate of process water for FSD were used as mentioned in the previous study by KHNP CRI. FSD was conducted for three cycles and each cycle was consisted of oxidation, reduction, chemical decomposition and purification. Oxidation and reduction process were conducted at 90°C. Chemical decomposition and purification process were conducted at 40°C due to the damage of UV lamp and IX by the heat. Total volume of process water for FSD demonstration test was 2.5 m2. KPS conducted decontamination performance review by calculating thickness reduction and weight loss of installed specimen. Operational review was conducted as if FSD test was conducted in the field based on the result of demonstration test. One of the most prioritized features is the workers’ safety. Also, the appropriate position of equipment needs to be considered to meet the required specification of component.
        33.
        2022.10 구독 인증기관·개인회원 무료
        Kori-1, the nuclear power plants in South Korea, first started operation in April 1978 and was suspended permanently in 2017. The saturation rate time of spent nuclear fuel generated by major nuclear power plants operating in Korea are getting closer. If we fail to dispose spent nuclear fuel, which is equivalent to high-level radioactive waste, the nuclear power plants will have to be shutdown. High-level radioactive waste is permanently disposed through a deep geological disposal system because it contains long-term half-life nuclides and emits high energy. To select the deep geological disposal site and construct the disposal facilities, it is necessary to establish appropriate regulatory policies accordingly. The status of database construction in OECD-NEA, NRC, SITEX, and IAEA, which provides safety regulations for deep geological disposal system, stipulates each requirement for dismantling nuclear power plants. However, details such as specific figures are not specified, and guidelines for the disposal of high-level radioactive wastes are not clearly distinguished. In Korea, the CYPRUS program, an integrated database system, has been developed to support comprehensive performance evaluation for high-level waste disposal. However, due to several difficult situations, maintenance and upgrades have not been performed, so the research results exist only in the form of raw data and the new research results have not been reflected. Other than that, there is no preemptive basis for regulating the deep geological disposal system. With real-time database, we can develop a regulatory system for the domestic deep disposal system by systematically analyzing the regulatory condition and regulatory case data of international organizations and foreign leading countries. The database system processed and stored primary data collected from nuclear safety reports and other related data. In addition, we used relational database and designed table to maximize time and space efficiency. It is provided in the form of a web service so that multiple users can easily find the data they want at the same time. Based on these technologies, this study established a database system by analyzing the legal systems, regulatory standards, and cases of major foreign leading countries such as Sweden, Finland, the United States, and Japan. This database aims to organize data for each safety case component and further prepare a safety regulatory framework for each stage of development of disposal facilities suitable for the domestic environment.
        34.
        2022.10 구독 인증기관·개인회원 무료
        CYPRUS is a web-based waste disposal research comprehensive information management program developed by the Korea Atomic Energy Research Institute over three years from 2004. This program is stored as existing quality assurance documents and data, and the research results can be viewed at any time. In addition, it helps to perform all series of tasks related to the safety evaluation study of the repository in accordance with the quality assurance system. In the future, it is necessary to improve the user convenience by clarifying the relationship between FEP and scenarios and upgrading output functions such as visualization and automatic report generation. This purpose of this study is to research and develop the advanced program of CYPRUS. This study is based on building FEP, DIM and scenario databases. It is necessary to develop an algorithm to analyze and visualize the FEP, DIM and scenario relationship. This project is an integrated information processing platform for DB management and visualization considering user convenience. The first development goal is to build long-term evolutionary FEP, DIM, and scenarios as a database. The linkage by FEP item was designed in consideration of convenience by using a mixed delimiter of letters and numbers. This design provides information on detailed interactions and impacts between FEP items. Scenario data lists a series of events and characteristic change information for performance evaluation in chronological order. In addition, it includes information on FEP occurrence and mutual nutrition by period, and information on whether or not the repository performance is satisfied by item. The second development goal is to realize the relationship analysis and visualization function of FEP and scenario based on network analysis technique. Based on DIM, this function analyzes and visualizes interactions between FEPs in the same way as PID, RES, etc. In addition, this function analyzes FEP and DIM using network analysis technique and visualizes it as a diagram. The developed platform will be used to construct and visualize the FEP DB covering research results in various disposal research fields, to analyze and visualize the relationship between core FEP and scenarios, and finally to construct scenarios and calculation cases that are the evaluation target of the comprehensive performance evaluation model. In addition, it is expected to support the knowledge exchange of experts based on the FEP and scenario integrated information processing platform, and to utilize the platform itself as a part of the knowledge transfer system for knowledge preservation.
        35.
        2022.10 구독 인증기관·개인회원 무료
        In Korea, borated stainless steel (BSS) is used as spent fuel pool (SFP) storage rack to maintain nuclear criticality of spent fuels. As number of nuclear power plants and corresponding number of spent fuels increased, density in SFP storage rack also increased. In this regard, maintain subcriticality of spent nuclear fuels was raised as an issue and BSS was selected as structural material and neutron absorber for high density storage rack. Because it is difficult to replace storage rack, corrosion resistance and neutron absorbency are required for long period. BSS is based on stainless steel 304 and it is specified in the ASTM A887-89 standard depending on the boron concentration from 304B (0.20-0.29% B) to 304B7 (1.75-2.25% B). Due to low solubility of boron in austenitic stainless steel, metallic borides such as (Fe, Cr)2B are formed as secondary phase metallic borides could make Cr depletion near it which could decrease the corrosion resistance of material. In this paper, long-term corrosion behavior of BSS and its oxide microstructures are investigated through accelerated corrosion experiment in simulated SFP condition. Because corrosion rate of austenitic stainless steel is known to be dependent on the Arrhenius equation, a function of temperature, corrosion experiment is conducted by increasing the experimental temperature. Detail microstructural analysis was conducted with scanning electron microscope, transmission electron microscope and energy dispersive spectrometer. After oxidation, hematite structure oxide film is formed and pitting corrosions occur on the surface of specimens. Most of pitting corrosions are found at the substrate surface because corrosion resistance of substrate, which has low Cr content, is relatively low. Also, oxidation reaction of B in the secondary phase has the lowest Gibbs free energy compared to other elements. Furthermore, oxidation of Cr has low Gibbs free energy which means that oxidation of B and Cr could be faster than other elements. Thus, the long-term corrosion might affect to boron content and the neutron absorption ability of the material.
        36.
        2022.10 구독 인증기관·개인회원 무료
        For safe management of spent nuclear fuels, they should be delivered to repository or waste disposal site. As the amount of spent nuclear fuel transportation is expected to increase in the future due to the provision of an intermediate storage facility, the necessity to secure transportation cask is emerging. In order to secure the spent nuclear fuel transportation cask, it is necessary to analyze the regulatory processes for domestic and foreign spent nuclear fuel transportation cask. In this study, the regulatory processes for domestic and foreign spent nuclear fuel transportation cask was analyzed. In this study, the IAEA, US, and Korea spent nuclear fuel transportation cask regulatory processes were analyzed. The domestic and foreign spent nuclear fuel transportation cask regulatory processes consist of design phase, manufacturing phase, and operation phase. In the design stage, the transport requirements are designed in accordance with the safety requirements of international organizations and countries. The application to be submitted when applying for approval should include a safety analysis report, evidence proving compliance with safety requirements et al. In the manufacturing stage, it is a stage to check whether the safety requirements are satisfied before the first use after manufacturing the transportation cask. Inspections include welding inspection, leakage inspection, shielding inspection, and thermal inspection. In the operation stage, it is a stage of periodically performing inspections for continuous maintenance of the package when the transportation cask is used. The inspection items to be performed are similar to the manufacturing stage and typically include performance inspection of components and leakage inspection. In this study, domestic and foreign spent nuclear fuel transportation cask regulatory processes were analyzed. It was found that the domestic and foreign spent nuclear fuel transportation cask regulatory processes consist of the design phase, the manufacturing phase, and the operation phase. The results of this study can be used as basic data for policy decision-making for the spent nuclear fuel cask.
        1 2 3 4 5