검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        1.
        2023.11 구독 인증기관·개인회원 무료
        To ensure the maintenance of the nuclear emergency response system, it is important to periodicaly conduct hazard assessments using up-to-date input variables. The results of this review are apllied to drills and exercises, enabling the inspection of emergency plan and response procedures. Therefore, this study aims to analyze off-site consequences according to the occurrence time of the Design Basis Accident (DBA) for the Hanaro Fuel Fabrication Facility (HFFF) by using the recent site-specific meteorological data and to review the appropriateness of urgent protective measures. MELCOR and SafeHanaro computer codes were used for radiation source-term estimation and environmental impact assessment, respectively. It was assumed that radioactive materials are released into environment for 2 hours due to the fire during the nuclear fuel sieving process. The following 12 scenarios for each occurrence time period was selected (0 am, 2 am, 4 am, 6 am, 8 am, 10 am, 12 pm, 2 pm, 4 pm, 6 pm, 8 pm, 10 pm) and the effective dose and thyroid dose in earlyand intermediate-phase were assessed. As a result, the most severe exposure-induced accident scenario is found to be as occurring at 0 am on July 15th, with the Most Exposed Individual (MEI) positioned 200 meters downwind from the facility. The committed effective dose for MEI is identified as to be 2.97E-02 mSv which has a significant margin against the IAEA's (Generic Intervention Level) GIL and (Generic Criteria) GC. During the passage of the radio-active plume, the estimated effective dose and thyroid dose due to inhalation were 2.97E-02 mSV (99.99%) and 5.06E-05 mSv (99.77%), respectively. External exposure appeared to be negligible. Meanwhile, the thyroid dose is noticeably below the criteria for decision-making for distribution of Potassium Iodide (KI). Accordingly, in order for local residents to participate in the exercise and drills, it is essential to develop scenarios considering simultaneous emergencies at multi-facilities and latenight accidents. In conclusion, this results will be used to improve the exercise plans for enhancing the nuclear or radiological emergency competencies of the KAERI.
        2.
        2023.11 구독 인증기관·개인회원 무료
        The primary objective of radiological environmental monitoring after a radiological emergency at a nuclear facility is acquisition of background data for the determination of protective actions for the population and the comprehensive assessment of the impact on the population residing in proximity to the nuclear facility. The responsible entities engaged in the conduct of the radiological environmental monitoring encompass government organization and nuclear licensees, operating in strict adherence to the national radiological disaster prevention framework. In accordance with the national radiological disaster prevention framework, radiation environmental monitoring is executed through the deployment of emergency response organization, and recurrent exercise drills aimed at augmenting responsible capabilities. In the context of radiation environmental monitoring, it is necessary to specify measurement parameters, monitoring location, and methodological protocols for each stage, considering potential exposure pathways. In terms of equipment, it is important to utilize mobile assets such as aerial or vehicle surveys for rapid and accurate radiation environment monitoring. Radiation disaster drills are regularly conducted, and the radiation environment monitoring field is also regularly trained to enhance response capabilities. The scale of these drills may vary, ranging from exclusive participation by nuclear licensees to joint exercises conducted by governmental agencies. This iterative process of periodic drills and equipment enhancements has led to a progressive augmentation of environmental monitoring capabilities, ensuring a well-coordinated orchestration of radiation monitoring within the framework of radiation protection. Notwithstanding these achievements, challenges in public communication regarding the decision to take protective actions and the dissemination of information to the public. Considering that the purpose of radiation environmental monitoring extends beyond safeguarding public health; it also serves to alleviate public anxiety. In the future, public communication between these stakeholders should also be included in disaster drill programs to ensure proper consultation between each stakeholder during drills and to build understanding and trust in radiation environmental monitoring. This is expected to improve the quality of radiation environmental monitoring response capabilities.
        3.
        2023.11 구독 인증기관·개인회원 무료
        In the event of a radiological emergency at a nuclear facility, the exchange of information on the accident situation is very important in the response process. For this reason, international organizations such as the IAEA and the EU operate systems to exchange information in the event of a radiological emergency. In south korea, the emergency response information exchange system (ERIX) developed by KINS is operated for use by the national radiological emergency response organization. The ERIX enables the exchange of emergency response information between organizations such as the government, nuclear operators, local authorities, KINS and KIRAMS. The KAERI has developed the KAERI emergency response information exchange system (KAERIX) for the exchange of accident information and emergency response information between the emergency response organizations of the KAERI in the event of a radiological emergency. This system is web-based using HTML, runs on internal network and is only available to KAERI staff. Recently, as the need for optimizing and upgrading KAERIX has arisen, improvements have been derived. The main improvement is optimizing KAERIX for Microsoft Edge to minimize errors. At present, it is optimized for Internet Explorer, but optimizing it for Microsoft Edge mode has become essential due to Microsoft discontinuing support for Internet Explorer. Another major improvement involves adding functions in ERIX to KAERIX, such as displaying the deletion/ correction status of input information and providing notifications for important information registration. Ultimately, KAERIX will be upgraded and optimized in 2024, reflecting improvements.
        4.
        2023.05 구독 인증기관·개인회원 무료
        Employees of nuclear licensees have to take the education for radiological emergency preparedness, as prescribed by presidential Decree. The Korea Atomic Energy Research Institute (KAERI), as an educational institution designated by the Nuclear Safety and Security Commission (NSSC), has been conducting field-oriented workplace education. This aims to enhance understanding of radiological emergencies that may occur in nuclear facilities and to strengthen response capabilities to prevent and deal with accidents in the event of radiation emergencies or radioactive disasters. To accomplish these educational goals, a paradigm shift from the previous theory-oriented curriculum to a participatory curriculum with high field applicability is needed to strengthen the ability to respond to nuclear or radiological emergencies. In addition, a feedback system is required to manage the quality of education and improve the curriculum. In this regard, KAERI sought ways to revitalize the education to strengthen the emergency response competencies. Based on the concept of the Systematic Approach to Training (SAT) methodology, which is recommended by the International Atomic Energy Agency (IAEA) for the development and implementation of education and training for NPP personnel, an educational model and its feedback system were developed. Then, a field-oriented participatory curriculum operation and satisfaction survey were conducted to evaluate the educational effectiveness. Lastly, the survey results were discussed in a critique session to point out weaknesses and indicate areas for improvement, and then were used as data for educational quality assurance. This paper introduces the composition and effectiveness of KAERI’s SAT-based education model based on its recent three years of experience.
        5.
        2022.10 구독 인증기관·개인회원 무료
        When the leakage of radioactive material or radiation to the environment or a concern, it is important to accurately understand the impact on the environment. Therefore, environmental effects evaluation using modeling based on meteorological data and source-term data is carried out, or environmental radiation monitoring which is an emergency response activity that directly measures dose is performed. As lessons learned from the Fukushima accident, environmental effects evaluation and modeling cannot utilize during the emergency and decision-making process for protective action for the public. Thus, rapid environmental radiation monitoring is required. In Korea, when an emergency is issued at a nuclear facility, urgent environmental radiation monitoring is conducted based on the national nuclear emergency preparedness and response plan, which can provide important information for decisionmaking on public protective actions. A review of strategies for urgent environmental radiation monitoring is important in performing efficient emergency responses. The main purpose of urgent environmental radiation monitoring is to gather data for decisionmaking on public protective actions to minimize the damage from the accident. For effective data collection and distribution, support from the national and local government and local public organizations and radiation expertise groups, and nuclear facility licensee are required. In addition, an emergency environmental radiation monitoring manual is required to immediately perform environmental monitoring in an emergency situation. The manual for emergency monitoring should include the activities to be conducted according to the phases of the emergency. The phases of the emergency are divided into pre-leakage, post-leakage, intermediate, and recovery. The reasons for establishing strategies are government and public information, the implementation of urgent population protection countermeasures, predicting and tracking plume trajectory, and detection of any release, the protection of emergency and recovery workers, the implementation of agricultural countermeasures and food restrictions, the implementation of intermediate- and recovery-phase countermeasures, contamination control. Besides meteorological data, ambient dose rate and dose, airborne radionuclide concentration, environmental deposition, food, water, and environmental contamination, individual dose, and object surface contamination data are also required for making information for the public.
        11.
        2016.11 서비스 종료(열람 제한)
        2002년 한일월드컵의 성공적 개최로 인한 축구 열풍으로, 인조잔디구장 조성 붐이 형성되어 급격하게 확대되기 시작한 인조잔디시장은 교육부와 국민체육진흥공단의 생활체육 및 체육시설의 선진화 방안에 따른 인조잔디 조성계획으로 지자체 및 학교 등 공공기관이 수요가 보태지면서 가히 폭발적으로 성장하게 되었다. 인조잔디의 사용연한은 보통 7~8년으로 알려져 있으나, 이용이 빈번한 학교운동장, 공공체육 시설의 경우 평균 3~5년으로 짧은 편이다. 잔디파일의 경우 시간이 지남에 따라 물리적 마모 및 충격에 의해 열화가 진행되며, 파일의 탈락 및 인장강도, 인발력 저하, 고무분말 노출로 인한 분진 발생의 원인이 된다. 인조잔디가 깔린 학교는 전국에 1,580여 곳이며, 이 가운데 200여 곳(12.7%)은 사용연한이 다 됐거나 지났으며, 사용한 지 5년이 넘어 노후된 곳도 613곳(38.8%)이나 되어 폐기 인조잔디 처리가 시급한 문제로 떠오르고 있다. 국내 처리방법은 폐기 인조잔디 발생 시 사업장 폐기물로서 위탁, 소각 후 매립하고 있으며, 소각 후 매립 처분에 있어 대부분의 인조잔디와 충전재(고무분말, 규사)를 구분하지 않고 일괄 소각 후 매립하고 있어 자원의 낭비와 자연환경의 파괴가 우려된다. 이에 본 연구에서는 폐기 인조잔디 충전재의 0.5mm이하 미분쇄 가공을통한 TPV용 소재 개발을 위한 연구를 진행하였으며, 원자재 공급업체와 중가 가공처리업체, 최종 제품 수요업체, 총괄 관리기관 간의 업무분장을 통하여 자원 재활용 네트워크를 구축하였다.
        12.
        2016.11 서비스 종료(열람 제한)
        우리나라는 2012년을 기준으로 약 1,300여개소의 군부대 사격장, 15개 경기 사격장, 17개 레져용 사격장, 미군부대에서 사용하는 95개 훈련장 사격장이 운용되고 있다. 최근 국방부와 환경부가 공동으로 19개 사격장을 대상으로 토양 오염도를 조사한 결과를 보면, 모든 사격장의 토양이 발사된 탄두의 영향으로 납, 구리, 크롬 등의 중금속으로 심각하게 오염된 사실이 확인된 바 있다. 토양 중 중금속의 존재 형태는 여러 가지로 나타날 수 있는데, 일반적으로 탄피의 작은 알갱이 형태인 중금속 분말 형태와, 분말로 용출되어 토양입자에 흡착 또는 침전물 형태의 복잡한 화합물로 존재한다. 유기물과는 달리 중금속은 장기간 경과 후에도 그 양은 변화지 않으며, 단지 주변 조건에 따라 여러 가지 형태의 다양한 모습으로 존재한다. 대표적인 처리방법에는 물리적, 화학적 방법에 의한 분리 기술과 고정화 또는 안정화 방법에 의한 위해성 저감 등이 있다. 기존 사격장의 중금속오염 토양의 정화를 위하여, 소석회와, 석회석으로 구성된 연속 칼럼 반응조를 통과시킨 다음, pH를 중성으로 조절하기 위하여 pH 조정조를 통과시키는 지하수의 정화방법(시트르산, 아세트산, 옥살산과 같은 저분자 유기산을 주성분으로 하는 용출제용 조성물을 이용하여 토양 중에 투입하여 중금속을 부착시킨 후 제거하는 중금속 오염 토양의 정화방법) 등이 제안되어 왔으나, 이들 방법은 모두 사후적 정화방법에 관한 것으로 완전한 정화가 불가능할 뿐만 아니라 정화에 많은 노력과 시간이 소요된다는 문제점이 있다. 따라서 본 연구에서는 발사된 탄두를 연소 및 화재의 위험과 토양의 중금속 오염 없이 재활용이 가능한 피탄 받이용(탄두회수용) 충진재 개발을 진행하였다. 이를 통하여 탄두를 원형 그대로 회수함에 따른 고비용 탄두의 재활용이 가능하며, 탄두에 의한 토양 중금속 오염문제를 원천적으로 봉쇄할 수 있을 것으로 기대된다.