검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 242

        22.
        2023.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        실버 페이스트는 상대적으로 낮은 열처리로 공정이 가능하기 때문에 전자 소자 응용분야에서 유용한 전극 재료이다. 본 연구에서는 은 페이스트 전극에 대기압 플라즈마 제트를 이용하여 전극 표면을 처리 했다. 이 플라즈마 제트는 11.5 kHz 작동 주파수에서 5.5 ~ 6.5 kV의 고전압을 사용하여 아르곤 분 위기에서 생성되었다. 플라즈마 제트는 대기압에서 수행함으로써 인쇄 공정에 더 유용할 수 있다. 플라즈 마 처리시간, 인가된 전압, 가스유량에 따라 전극의 표면은 빠르게 친수성화 되었으며 접촉각의 변화가 관 찰되었다. 또한, 대면적 샘플에서 플라즈마 처리 후 접촉각의 편차가 없었는데, 이는 기판의 크기에 관계없 이 균일한 결과를 얻을 수 있었다는 것을 의미한다. 본 연구의 결과는 대면적 전자소자의 제조 및 향후 응 용 분야에서 적층 구조를 형성하는데 매우 유용할 것으로 기대된다.
        4,000원
        23.
        2022.10 구독 인증기관·개인회원 무료
        It is likely to occur internal exposure for workers in Nuclear Power Plants (NPPs) due to the intake of radionuclide. To assess the internal exposure dose the measurement of activity for remain radionuclide is necessary. The Whole Body Counters (WBCs) are commonly used for measurement of remain radionuclide activity in human body. Korea Hydro & Nuclear Power Co., Ltd. (KHNP) conduct performance test of WBCs in all NPPs for every year to confirm the performance of equipment. The performance test is conducted using unknown sources and the participants of the comparison test submit the radionuclide and activity of the unknown sources measured by WBC as a result. The performance indicator and criteria for WBC recommended in the American National Standards Institute (ANSI) N13.30 report published in 2011 are applied. The performance indicator is Root Mean Squared Error (RMSE) and criteria is 0.25 or less. The results of performance test performed in 2022 for all WBC is meet the ANSI N13.30 criteria. And the RMSE values are confirmed from 0.01 to 0.23. This means that the residual radioactivity measurement results using WBC are reliable.
        26.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Nuclear power plant decommissioning generates significant concrete waste, which is slightly contaminated, and expected to be classified as clearance concrete waste. Clearance concrete waste is generally crushed into rubble at the site or a satellite treatment facility for practical disposal purposes. During the process, workers are exposed to radiation from the nuclides in concrete waste. The treatment processes consist of concrete cutting/crushing, transportation, and loading/unloading. Workers’ radiation exposure during the process was systematically studied. A shielding package comprising a cylindrical and hexahedron structure was considered to reduce workers’ radiation exposure, and improved the treatment process’s efficiency. The shielding package’s effect on workers’ radiation exposure during the cutting and crushing process was also studied. The calculated annual radiation exposure of concrete treatment workers was below 1 mSv, which is the annual radiation exposure limit for members of the public. It was also found that workers involved in cutting and crushing were exposed the most.
        4,000원
        27.
        2022.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Designing and producing a low-cost, high-current-density electrode with good electrocatalytic activity for the oxygen evolution reaction (OER) is still a major challenge for the industrial hydrogen energy economy. In this study, nanostructured Fe-doped CuCo(OH)2 was discovered to be a precedent electrocatalyst for OER with low overpotential, low Tafel slope, good durability, and high electrochemically active surface sites at reduced mass loadings. Fe-doped CuCo(OH)2 nanosheets are made using a hydrothermal synthesis process. These nanosheets are clumped together to form a highly open hierarchical structure. When used as an electrocatalyst, the Fe-doped CuCo(OH)2 nanosheets required an overpotential of 260 mV to reach a current density of 50 mA cm−2. Also, it showed a small Tafel slope of 72.9 mV dec−1, and superior stability while catalyzing the generation of O2 continuously for 20 hours. The Fe-doped CuCo(OH)2 was found to have a large number of active sites which provide hierarchical and stable transfer routes for both electrolyte ions and electrons, resulting in exceptional OER performance.
        4,000원
        28.
        2022.05 구독 인증기관·개인회원 무료
        In 2005, groundwater contamination due to unplanned releases of radioactive materials from the US. Nuclear Power Plants (NPPs) such as Braidwood and Indian Point was confirmed. The following year, in 2006, The Nuclear Regulatory Commission (NRC) established a task force team to investigate the history of unplanned release of all NPP in the US. As a results 217 events of unplanned release including leaks and spills were identified in the US NPPs. The NRC regulates the radioactivity concentration of off-site groundwater by setting a reporting levels (RLs), and if exceeds the RLs, the licensee must report within 30 days. When the off-site groundwater is used as drinking water or non-drinking water, the RLs for tritium in groundwater are 740 Bq·L−1 or 1,110 Bq·L−1, respectively. Whereas the NRC does not set the RLs for on-site groundwater. The Nuclear Energy Institute (NEI) issued the guidance document “Industry groundwater protection initiative” NEI 07-07 in 2007. And the members of the NEI promised with regulatory body and local governments to implement groundwater monitoring/protection program according to the NEI 07-07. The document states that when the on-site groundwater is used as drinking water, the RL (740 Bq·L−1) for off-site groundwater will be applied and the licensee voluntarily reported to the NRC. And also, NPPs are setting the Investigation Level (IL) below the RP and the IL is various among the NPPs. The IL is the standard by which detailed investigations are implemented when the level (radioactivity concentration) is exceeded.
        29.
        2022.05 구독 인증기관·개인회원 무료
        There are many Systems, Structures, and Components (SSCs) in Nuclear Power Plants (NPPs). The systems include radiological waste treatment system, spent fuel pool cooling, emergency core cooling systems, etc. The structures include reactor building, piping vaults, radioactive waste storage facilities, etc. The components include valves, pumps, piping segments, etc. Radionuclides exist in some of these SSCs and unplanned release may occur when leaks or spills from them. And also Work Practice (WP) is another reason of unplanned release in NPPs. The WP is defined as an action taken by individuals during maintenance, operational or support activities, which could result in or prevent a spill or leak of a radioactive solid, liquid or gas that has a credible mechanism for contamination of groundwater. According to the results of the Electric Power Research Institute (EPRI) survey, a total of 323 unplanned release event occurred at US NPPs from 1970 to 2014. Among them, 219 events were counted to have occurred at pressurized water reactors (PWRs). In addition, it was confirmed that 41 of the 44 PWR sites (about 93%) in the US, operated at the time of the survey period, had experienced at least one unplanned release events of licensed material which impacted groundwater. This means that the US PWR sites have experienced an average of approximately 5 unplanned release event per site. The source with the most unplanned releases, including SSCs and WP, was miscellaneous systems with a percentage of about 33% (72 events). Miscellaneous systems include pipes, and it was confirmed that unplanned releases mainly occurred in pipes such as the main steam system, condensate and feedwater system, and emergency core cooling system. And the percentage was high in the order of WPs (21%, 45 events), radioactive effluents (20%, 43 events), refueling water storage (8%, 17 events), radioactive waste/material operations (7%, 16 events), spent fuel storage (5%, 12 events), unknown (4%, 9 events), and structures (2%, 5 events). The history of the unplanned release of the US NPPs will be considered when revising major SSCs in the domestic NPP groundwater monitoring program.
        30.
        2022.05 구독 인증기관·개인회원 무료
        In order to monitor the contamination of groundwater due to unplanned release of radioactive materials and the spread to off-site environments, the nuclear power plants (NPPs) conduct groundwater monitoring program (GWMP) in Korea. The GWMP should be established based on the groundwater flow model reflecting the conceptual site model (CSM) of the NPP’s site. In this study, in order to optimize the GWMP, the existing CSM and the groundwater flow model of the domestic NPPs site was updated by reflecting the latest groundwater level. As part of the CSM improvement, the hydrogeological units were subdivided more detailed from three to six through the review of hydrogeological characteristics of the NPPs site. In addition, major variables that affect groundwater flow, such as water conductivity, have been updated. The groundwater flow model was revised overall as the CSM was improved. In particular, the excavation depth of the structure and backfill area generated during the construction stage of the NPP structures was accurately reflected, and the drainage boundary conditions were realistically reflected. To verify the revised groundwater flow model, steady-state correction was performed using the groundwater level measured in April, 2021. As a results of the steady-state correction, the standard error of estimate, root mean square (RMS), normalized RMS, and the correlation coefficient were 0.32 m, 1.692 m, 5.608%, and 0.964, respectively. This means that the groundwater flow model is reasonably constructed. The CSM and groundwater flow model improved in this study will be used to optimize the monitoring location of groundwater in NPPs.
        31.
        2022.05 구독 인증기관·개인회원 무료
        During the decommissioning of nuclear power plant (NPP), massive amount of concrete wastes is generated, which are non-radioactive and radioactive. The concrete is a representative construction material which affords reliable structural stability, good formability, and trustful integrity. Also, its reasonable neutron absorbing property allows the various application for many components, including building construction material, bio-shield concrete, etc. Due to the noted aspects of concrete, the radiological concrete characterization is classified as an important process for development of effective strategy for concrete management, in terms of process management and financial control during the decommissioning. The characterization of bio-shield concrete is important in waste management. The understanding and characterization of activation depth is essential for the determination of waste management strategy, classification of bio-shield concrete, and process development of decommissioning. On the other hand, concrete for construction application requires the evaluation of surface contamination of them. The concrete for containment building and its structure is rarely activated, but surface contaminated. In this paper, the reactor data from representative PWR reactors in the US is studied. The experience on Yankee Rowe, Maine Yankee, and Connecticut Yankee NPPs are systematically studied. The Yankee Rowe was a 4-loop PWR of Westinghouse design with 185 MWe. The Main Yankee was a 3- loop PWR of Combustion Engineering design with 864 MWe. The Connecticut Yankee was a 4-loop Westinghouse type with 560 MWe. The characterization studies on bio-shield concrete will be discussed in this paper, including activation depth, primary nuclides, etc.
        32.
        2022.05 구독 인증기관·개인회원 무료
        The Fukushima nuclear power plant accident, which was caused by the Great East Japan Earthquake on March 11, 2011, is of great concern to the Korean people. The scope of interest is wide and diverse, from the nuclear accident itself and the damage situation, to the current situation in Fukushima Prefecture and Japan, and to the safety of Japanese agricultural and fishery products. Concerns about nuclear safety following the Fukushima nuclear accident have a significant impact on neighboring nation’s energy policy. It has been 11 years since the Fukushima nuclear accident. In neighboring nation society, the nature and extent of damage caused by the Fukushima nuclear accident, the feasibility of follow-up measures at home and abroad, the impact on neighboring nations, and the direction of nuclear policy reflecting the lessons of the accident are hotly debated topics. Recently, the controversy has grown further as it is intertwined with Japan’s concerns about the safety and discharge of the contaminated water into the sea, and conflicts over domestic nuclear power policies. About 1.29 million tons, as of March 24, 2022, of the contaminated water are generated, which is close to the 1.37 million tons of water storage capacity. In response, the Japanese government announced on April 13, 2021, that it plans to discharge the contaminated water into the sea from 2023. This study evaluates the amount of the contaminated water that has passed through the ALPS and reviews the preparations and related facilities for ocean discharge after diluting the contaminated water. In addition, it is intended to forecast the various impacts of ocean discharge.
        33.
        2022.05 구독 인증기관·개인회원 무료
        Numerous nuclear power plants that had been built in the late 20th century have entered the aging phase and are scheduled to be decommissioned. The decommissioning project of a commercial nuclear power plant is an array of complex processes involving the activities of site characterization, decontamination, dismantling, and site restoration. Hence, a number of essential factors, such as scheduling, work progress, and staffing, should be taken into account while the decommissioning plan is drafted and modified. Guidances on managerial and social aspects of decommissioning have been rare as compared to those of technical viewpoints. Nonetheless, the nuclear industry in the US has presented no little amount of experience on their decommissioning projects dealing with those perspectives. Thus, three sets of the case study were conducted to obtain useful lessons learned. The Maine Yankee nuclear power plant initially acquired 40 years of the operating license, it was in operation for only 25 years from 1972 until 1996. The owner group decided to shut down because of the deterioration of the profitability in 1997. The case of the Maine Yankee project enlightened the importance of the contract management and stakeholder relations. The Rancho Seco nuclear power plant is a single-unit nuclear power reactor site with 913 MWe output that commenced commercial operation in 1975. The Rancho Seco that had become the first-ever reactor shut down by a public voting introduced several innovative approaches for the decommissioning, some of which turned out to be very successful. The SONGS 1 commenced the commercial operation in 1968 and had been decided to cease its operation permanently due to a steep decline in profitability in 1992. The SONGS 1 presented worthwhile lessons in terms of project management. In this study, several lessons learned related on managerial, engineering, and regulatory/social aspects considered during the NPP decommissioning will be reviewed and discussed.
        34.
        2022.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        To assess the influence of environmental factors on the phytoplankton community structure and total phytoplankton biomass during four seasons in 2014, we investigated the abiotic and biotic factors at 25 stations in the Busan coastal region. The phytoplankton community and total phytoplankton biomass were strongly dependent on the discharge from the Nakdong River, and the high density of phytoplankton was related with the introduction of the Tsushima Warm Current (TWC), particularly in the thermohaline fronts of the fall season. The relationship between the salinity and nutrient (Dissolved inorganic nitrogen=DIN: R 2=0.72, p<0.001 and Dissolved inorganic silicon=DSi: R 2=0.78, p<0.001) highly correlated with the river discharge, implying that those nutrients have played a crucial role in the growth of diatom and cryptophyta. The total phytoplankton biomass was highest in the summer followed by autumn, spring, and winter. Diatom and cryptophyta species were dominant species during the four seasons. Additionally, there were strong positive correlations between Chlorophyll a and total phytoplankton biomass (R 2=0.84, p<0.001), cryptophyta (R 2=0.76, p<0.001) and diatom (R 2=0.50, p<0.001), respectively. In particular, we found that there were significant differences in the nutrients, phytoplankton community compositions, and total phytoplankton biomass between the inner and the outer coastal region of Busan, depending on the amount of river discharge from the Nakdong River, particularly during rainy seasons. Therefore, the seasonal change of TWC and river discharge from the Nakdong River serve an important role in determining phytoplankton population dynamics in the Busan coastal region.
        4,300원
        1 2 3 4 5