검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 357

        41.
        2019.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Commercial direct refrigerators have good energy efficiency, but are difficult to use for supercooled storage due to their large temperature deviation. Placing insulators and conductors inside the refrigerator could reduce these temperature deviations to within 0.3 degrees, allowing for the supercooled storage. The supercooled storage of salted Chinese cabbages during ten weeks was progressed to compare the other low temperature storages. The nucleation temperatures of salted Chinese cabbage were around -2.5oC and the freezing points were around -0.4oC, so -2oC was selected for the supercooled storage. The growth rate of lactic acid bacteria and yeast at -2oC storage was lower than that at 2oC storage. The reducing sugar was maintained higher due to the growth rate of lactic acid bacteria. The supercooled storage had an effect of delaying the fermentation of the salted Chinese cabbage, which may have the effect of delaying the fermentation of kimchi. This enhancement method of the direct refrigerator was effective for the supercooled storage and would be promising for commercial use.
        4,000원
        46.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 산업 현장에서 병행복발효 술덧 양조에 사용되는 입국과 개량누룩을 전분 당화용 발효제로 사용하고, 대한민국 강원도 삼척 지역에서 수집한 누룩에서 분리·동정한 W. anomalus SC-1을 사용하여 양조를 실시한 결과, 산업용 알코올 발효 효모 S. cerevisiae 대비 동등한 알코올 생성능을 보였고 유기산은 두 효모 모두 입국을 사용한 경우 citric acid, 개량누룩을 사용한 경우 lactic acid가 가장 많이 생성되었다. W. anomalus를 적용한 와인 및 중국 백주 제조를 위한 술덧의 품질 개선을 위한 다양한 연구 결과가 보고되고 있으므로 우리나라 고유의 전통주류 양조 기전의 규명과 주질 다양성 확보 및 이를 통한 차별화된 품질의 전통주 제조를 위하여 전통누룩 중 주요 알코올 발효 미생물로 분리되는 S. cerevisiae 외 야생효모의 알코올 발효 특성과 S. cerevisiae와의 상호작용에 대한 심화 연구의 필요성에 대한 단서를 제공할 수 있었다.
        4,000원
        47.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, lanthanum oxide (La2O3) dispersed molybdenum (Mo–La2O3) alloys are fabricated using lanthanum nitrate solution and nanosized Mo particles produced by hydrogen reduction of molybdenum oxide. The effect of La2O3 dispersion in a Mo matrix on the fracture toughness at room temperature is demonstrated through the formation behavior of La2O3 from the precursor and three-point bending test using a single-edge notched bend specimen. The relative density of the Mo–0.3La2O3 specimen sintered by pressureless sintering is approximately 99%, and La2O3 with a size of hundreds of nanometers is uniformly distributed in the Mo matrix. It is also confirmed that the fracture toughness is 19.46 MPa·m1/2, an improvement of approximately 40% over the fracture toughness of 13.50 MPa·m1/2 on a pure-Mo specimen without La2O3, and this difference in the fracture toughness occurs because of the changes in fracture mode of the Mo matrix caused by the dispersion of La2O3.
        4,000원
        48.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Over the last decade, the next generation’s ultra-high-temperature materials as an alternative to Nickel-based superalloys have been highlighted. Ultra-high-temperature materials based on refractory metals are one of several potential candidates. In particular, molybdenum alloys with small amounts of silicon and boron (Mo-Si-B alloys) have superior properties at high temperature. However, research related to Mo-Si-B alloys were mainly conducted by several developed countries but garnered little interest in Korea. Therefore, in this review paper, we introduce the development history of Mo-Si-B alloys briefly and discuss the properties, particularly the mechanical and oxidation properties of Mo- Si-B alloys. We also introduce the latest research trends of Mo-Si-B alloys based on the research paper. Finally, for domestic research related to this field, we explain why Mo-Si-B alloys should be developed and suggest the potential directions for Mo-Si-B alloys research.
        4,000원
        50.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ni-based oxide dispersion strengthened (ODS) alloys have a higher usable temperature and better hightemperature mechanical properties than conventional superalloys. They are therefore being explored for applications in various fields such as those of aerospace and gas turbines. In general, ODS alloys are manufactured from alloy powders by mechanical alloying of element powders. However, our research team produces alloy powders in which the Ni5Y intermetallic phase is formed by an atomizing process. In this study, mechanical alloying was performed using a planetary mill to analyze the milling behavior of Ni-based oxide dispersions strengthened alloy powder in which the Ni5Y is the intermetallic phase. As the milling time increased, the Ni5Y intermetallic phase was refined. These results are confirmed by SEM and EPMA analysis on microstructure. In addition, it is confirmed that as the milling increased, the mechanical properties of Ni-based ODS alloy powder improve due to grain refinement by plastic deformation.
        4,000원
        51.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        For the vessel export of strawberries, modified atmosphere package (MAP) using polyamide (PA) film and linear low density polyethylene (LLDPE) film was investigated to extend the shelf life of strawberries. Because the temperature and relative humidity changes of the MAP were lower than the changes of the control, the weight loss of the MAP were lower than that of the control. The low oxygen level and high carbon dioxide level were effective to decrease the fungal decay rate and to increase the hardness of strawberries. The Hunter’s color differences before and after storage showed no distinct difference between the MAP and the control. The lightness had a tendency to decrease while the redness increased. There were no significant changes of the soluble solids during the storage. The shelf life of strawberries could be extended to 16 days using the MAP considering the weight loss and the fungal decay rate. Thus, this MAP method using PA film and LLDPE film was effective to extend the shelf life of strawberries.
        4,000원
        52.
        2018.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The main purposes of this study were to identify the factors affecting the supercooling property and to improve the possibility of supercooling storage of fruits and vegetables. Freezing point and nucleation temperature, moisture content, hardness, sugar content, and pH of nineteen fruits and vegetables were measured and Pearson correlation analysis was performed. Freezing point showed a statistically significant correlation with moisture content and sugar content (p<0.01), while ice nucleation temperature showed a correlation (p<0.05) only for sugar content. In particular, the water content and sugar content did not show any correlation with the freezing supercooling difference (FSD). From the correlation analysis between FSD, aerobic bacteria, lactic acid bacteria, yeast, and mold, FSD showed a correlation (p<0.01) with aerobic bacteria. The experiments of the saline solutions inoculated with aerobic bacteria at different concentrations showed FSDs of about 2 for saline inoculated with 9.4 log CFU/mL and about 6 for saline inoculated lower than 5 log CFU/mL. Therefore, the aerobic bacteria concentration was determined to be a key factor affecting the supercooling storage of fruits and vegetables.
        4,000원
        56.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Molybdenum silicide has gained interest for high temperature structural applications. However, poor fracture toughness at room temperatures and low creep resistance at elevated temperatures have hindered its practical applications. This study uses a novel powder metallurgical approach applied to uniformly mixed molybdenum silicidebased composites with silicon carbide. The degree of powder mixing with different ball milling time is also demonstrated by Voronoi diagrams. Core-shell composite powder with Mo nanoparticles as the shell and β-SiC as the core is prepared via chemical vapor transport. Using this prepared core-shell composite powder, the molybdenum silicide-based composites with uniformly dispersed β-SiC are fabricated using pressureless sintering. The relative density of the specimens sintered at 1500oC for 10 h is 97.1%, which is similar to pressure sintering owing to improved sinterability using Mo nanoparticles.
        4,000원
        57.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The coupling of two semiconducting materials is an efficient method to improve photocatalytic activity via the suppression of recombination of electron-hole pairs. In particular, the coupling between two different phases of TiO2, i.e., anatase and rutile, is particularly attractive for photocatalytic activity improvement of rutile TiO2 because these coupled TiO2 powders can retain the benefits of TiO2, one of the best photocatalysts. In this study, anatase TiO2 nanoparticles are synthesized and coupled on the surface of rutile TiO2 powders using a microemulsion method and heat treatment. Triton X-100, as a surfactant, is used to suppress the aggregation of anatase TiO2 nanoparticles and disperse anatase TiO2 nanoparticles uniformly on the surface of rutile TiO2 powders. Rutile TiO2 powders coupled with anatase TiO2 nanoparticles are successfully prepared. Additionally, we compare the photocatalytic activity of these rutile-anatase coupled TiO2 powders under ultraviolet (UV) light and demonstrate that the reason for the improvement of photocatalytic activity is microstructural.
        4,000원
        58.
        2018.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The O2 and CO2 concentrations in controlled atmosphere (CA) rooms are determined by the respiration of produce like apples and the airtightness of the CA room, with gas in the CA room controlled by O2 and CO2 removal as well as respiration (CO2 increase and O2 decrease). The purpose of this study was to evaluate the validity of the gas exchange model for O2 removal, CO2 removal, the rate of O2 decrease and CO2 increase by respiration of apples, and airtightness of the CA room. It took 17.5 hours to reduce O2 concentration from 20.9% to 2.0% after loading 4.3 tons of Fuji apples into the CA room, which was 4.2 hours longer than the 13.3 hours of the model formula. After the CO2 concentration rose to 0.5% due to respiration, it took 4.7 hours to lower the CO2 concentration to 0.2%, which was 0.6 hours longer than that of the model equation. The rate of CO2 increase by respiration was 0.021%/ h, which was similar to the model equation (0.017%/h). Also after 4.7 hours, the O2 concentration decreased by 0.1% which was also in line with the model equation (0.13%/h).
        4,000원
        59.
        2018.05 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The variations of internal temperature, relative humidity (RH) and gas concentration in the pallet modified atmosphere package (MAP), using polyamide (PA) film and linear low density polyethylene (LLDPE) film, were investigated to extend the shelf life of tomatoes and paprikas. The temperature and RH inside the MAP were higher than that in the cold room, but there was no water condensation inside the MA film. The ethylene concentration in the MAP was maintained below 10 ppm. Oxygen level was stabilized at 2 to 5% during the storage and carbon dioxide level was also stabilized at 15 to 20%. The weight loss of the MAP tomatoes and paprikas was lower than that of the control because the RH in the pallet MAP was higher than that of the cold room. The fungal decay rate in the pallet MAP was also lower than that in the control due to a low oxygen concentration rate. There were no significant differences in the soluble solids, titratable acidity and Hunter’s color, but differences did exist in the hardness between the MAP and the control. So, this pallet MAP method was effective at extending the shelf life of tomatoes and paprikas considering the weight loss, fungal decay and hardness.
        4,000원
        60.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Molybdenum (Mo) is one of the representative refractory metals for its high melting point, superior thermal conductivity, low density and low thermal expansion coefficient. However, due to its high melting point, it is necessary for Mo products to be fabricated at a high sintering temperature of over 1800-2000 oC. Because this process is expensive and inefficient, studies to improve sintering property of Mo have been researched actively. In this study, we fabricated Mo nanopowders to lower the sintering temperature of Mo and tried to consolidate the Mo nanopowders through ultra high pressure compaction. We first fabricated Mo nanopowders by a mechano-chemical process to increase the specific surface area of the Mo powders. This process includes a high-energy ball milling step and a reduction step in a hydrogen atmosphere. We compacted the Mo nanopowders with ultra high pressure by magnetic pulsed compaction (MPC) before pressureless sintering. Through this process, we were able to improve the green density of the Mo compacts by more than 20% and fabricate a high density Mo sintered body with more than a 95 % sintered density at relatively low temperature.
        4,000원
        1 2 3 4 5