We have made a comprehensive statistical study on the coronal mass ejections(CMEs) associated with helmet streamers. A total number of 3810 CMEs observed by SOHO/LASCO coronagraph from 1996 to 2000 have been visually inspected. By comparing their LASCO images and running difference images, we picked out streamer-associated CMEs, which are classified into two sub-groups: Class-A events whose morphological shape seen in the LASCO running difference image is quite similar to that of the pre-existing streamer, and Class-B events whose ejections occurred in a part of the streamer. The former type of CME may be caused by the destabilization of the helmet streamer and the latter type of CME may be related to the eruption of a filament underlying the helmet streamer or narrow CMEs such as streamer puffs. We have examined the distributions of CME speed and acceleration for both classes as well as the correlation between their speed and acceleration. The major results from these investigations are as follows. First, about a quarter of all CMEs are streamer-associated CMEs. Second, their mean speed is 413 km s-1 for Class-A events and 371 km s-1 for Class-B events. And the fraction of the streamer-associated CMEs decreases with speed. Third, the speed-acceleration diagrams show that there are no correlations between two quantities for both classes and the accelerations are nearly symmetric with respect to zero acceleration line. Fourth, their mean angular width are about 60°, which is similar to that of normal CMEs. Fifth, the fraction of streamer-associated CMEs during the solar minimum is a little larger than that during the solar maximum. Our results show that the kinematic characteristics of streamer-associated CMEs, especially Class-A events, are quite similar to those of quiescent filament-associated CMEs.
nanoparticle was synthesized by the flame method, which was controlled by varying the ratio and flow rate of gas mixtures consisting of oxygen (oxidizer), methane (fuel) and nitrogen (carrier gas). The crystalline phases of nanoparticle depended strongly on the temperature distribution in the flame, whereas the morphology was not sensitive. We proved that the anatase phase formed without the phase transformation in the flame and the rutile phase generated through several phase transformations.
Nd-Fe-B type powder was sintered using spark plasma sintering method. Fabricated compact sintered at the temperature of , is found to be a composite magnet with Nd-Fe-Co-B and . The compact sintered at shows slightly low coercivity and large remanent magnetization comparing to the compact sintered at due to the formation of phase, resulting in the large maximum energy product. Maximum energy product tends to decrease with decreasing thickness of sintered compacts below 0.5 mm in thickness.
This study was carried out to evaluate the effects of washing medium, breed and washing temperature of fresh and frozen-thawed boar sperm on mitochondrial activity and membrane integrity by flow cytometry. More than 80% of fresh sperm washed with mTLP-PVA medium at 20℃ exhibited an intact membrane and a functional mitochondrion. With frozen-thawed samples, a large number of sperm showed both damaged membrane (36.4~46.9%) and nonfunctional mitochondrion (55.1~71.1%) in the mTLP-PVA and BTS washing media at 20℃. There were no breed effects of fresh and frozen-thawed sperm on mitochondrial activity and membrane integrity. The percentages of damaged membrane of fresh and frozen sperm, respectively, were higher at 4℃ washing temperature than at 20℃ washing temperature in the mTLP-PVA medium. We found that washing medium and washing temperature of fresh and frozen-thawed boar sperm were important for the analyses of mitochondrial activity and membrane integrity by flow cytometry.
In the present study, we investigated the effects of genotypes on in vitro maturation and fertilization in porcine fresh/frozen-thawed oocytes. The porcine cumulus-oocyte complexes (COCs) were divided into four groups according to whether they were: (1) in vitro matured; (2) cryopreserved and in vitro matured; (3) in vitro fertilized and (4) cryopreserved, and in vitro fertilized. Maturation of porcine COCs was accomplished by incubation in NCSU23 medium. Immature oocytes were cryopreserved by Open Pulled Straws (OPS) method according to Vajta et al., (1998). Oocytes stained by Acetic-Orcein method were observed under the microscope. DNA extracted from the ovaries was analyzed by RAPD (random amplified polymorphic DNA) and SSCP (single strand conformational polymorphisrrt) method. The rates of oocytes maturation and fertilization were significantly high in AA genotype. The results indicated that in vitro maturation and fertilization in porcine fresh/frozen-thawed oocytes may be affected by genotypes in pigs.
The Cosmic Evolution Survey (COSMOS) is a Hubble Space Telescope (HST) treasury project. The COSMOS aims to perform a 2 square degree imaging survey of an equatorial field in I(F814W) band, using the Advanced Camera for Surveys (ACS). Such a wide field survey, combined with ground-based photometric and spectroscopic data, is essential to understand the interplay between large scale structure, evolution and formation of galaxies and dark matter. In 2004, we have obtained high-quality, broad band images of the COSMOS field (B, V, r', i', and z') using Suprime-Cam on the Subaru Telescope, and we have started our new optical multi-band program, COSMOS-21 in 2005. Here, we present a brief summary of the current status of the COSMOS project together with contributions from the Subaru Telescope. Our future Subaru program, COSMOS-21, is also discussed briefly.