검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2014.11 서비스 종료(열람 제한)
        현재 화석연료의 매장한정량에 따른 고갈가능성과 환경적 문제에 대한 위기감이 높아짐에 따라 대체에너지원의 필요성이 더욱 높아지고 있다. 대체 에너지원 중 하나인 바이오매스는 에너지원과 화학물질 원료로서 이용 가능하며 이에 대한 연구가 활발히 진행되고 있다. 바이오매스는 지속가능한 자원이며 탄소중립적인 특징을 가진다. 또한, 유기성화합물로 이루어져 있어 화석연료를 대체할 수 있는 에너지원으로 각광받고 있다. 바이오매스 이용을 위한 열화학적 변환 공정으로는 연소, 가스화, 열분해 방법이 있다. 열분해방법은 무산소 조건, 400~600℃ 하에서 열적분해가 일어나는 공정으로 고형분인 바이오촤, 바이오오일, 바이오가스를 얻을 수 있다. 액상인 바이오 오일은 다양한 유기화합물이 혼합되어 있는 상태로 이를 분리하여 화학물질의 원료, 수지합성, 의약품, 유기용매로의 이용 가능성이 매우 높다. 바이오오일의 분리방법으로 용매추출법, 분자증류법, column chromatography 외에도 다양한 연구가 진행되고 있다. 이번 연구에서는 바이오오일 유용물질 회수를 위한 기초실험으로 용매추출법을 이용한 상분리 실험을 진행하였다. 본 연구에서는 폐톱밥을 원료로 느린 열분해를 통해 생성된 바이오오일의 상분리 실험을 진행하였다. 선행 실험을 통해 셀룰로오스로부터 유도되는 유용 물질중 하나인 Furfural 생성 최적 조건을 찾은 후 극성이 다른 용매를 선택하였다. 용매와 바이오오일의 부피비는 1:1로 설정하였으며 상분리 결과는 GC/MS로 분석하였다. 각 용매와 분리 조건에 따른 soluble, insoluble 상의 결과를 GC/MS를 통해 비교하였다. Furfural 및 기타 유용물질 분리에 적합한 용매를 선정하였으며 주요 유기물질 회수방안에 대한 연구를 진행하였다.
        2.
        2014.11 서비스 종료(열람 제한)
        신재생에너지의 종류에는 수소에너지, IGCC, 연료전지, 바이오에너지 등 여러 종류가 있지만, 기존의 화석연료를 대체할 수 있는 에너지는 바이오매스가 유일하다. 바이오매스는 광합성 과정을 통해 체내 이산화탄소를 축적하므로 대기 중의 이산화탄소 농도를 변화시키지 않아 기후변화 완화에 기여를 하고 있다. 바이오오일은 수송용 연료로 사용이 가능하고 그 외에 다양한 화학물질들이 존재하여 화학시장의 새로운 플랫폼이 될 수 있는 자원으로 인식되고 있다. 바이오오일을 만드는 방법은 여러 가지가 있지만 열분해는 가장 간단하면서도 다양한 물질이 생성되어 그 활용가치가 매우 높다. 열분해 후에는 바이오촤, 바이오 오일, 바이오가스가 생성되는데 이번 연구에서는 바이오 촤와 바이오 오일의 분석에 집중하였다. 생성된 바이오오일은 탄화수소 계열 화학물질 외에 다양한 유기화합물이 존재하는데 화학산업의 기초가 되는 유기물질들이 다량 존재한다. 바이오촤는 활성탄으로 사용이 가능하고 석탄을 대체할 연료로 고려되고 있는 단계로 가치가 높게 받아들여지고 있다. 본 연구에서는 목재 펠릿 제조 후 남는 폐 톱밥을 이용하였고 화학 처리는 되지 않았다. ZSM-5 촉매를 사용하여 열분해를 진행하였고, Si/Al ratio가 다른 촉매를 이용하여 최적의 촉매와 조건을 찾아내었다. 촉매와 폐톱밥을 균질하게 섞어 촉매 반응이 원활하게 진행되도록 유도하였고 생성되는 바이오촤와 바이오 오일에 촉매의 영향이 있는지 확인하였다. 대조군으로 무촉매 조건을 두었는데 이 때 온도는 350, 400, 450, 500, 550℃로 변화를 주며 실험을 진행하였다. 촉매 조건에서는 400, 500℃로 실험을 진행하였다. 열분해하여 나오는 생성물을 성상별로 분류하여 고체와 액체 물질이 어느 촉매 조건에서 많이 나오는지 비교하였다. 바이오 촤는 질량비교와 원소분석을 이용하여 분석하였고 바이오 오일은 질량 비교와 GC-MS를 이용하여 분석하였다.
        3.
        2013.11 서비스 종료(열람 제한)
        에너지 수요의 증가와 환경문제에 대한 중요성을 인식하면서 신재생에너지에 대한 연구가 주목받고 있다. 정부의 지원 정책과 원유 가격 불안정성 등의 이유로 국내에서도 활발한 연구가 진행 중이다. 신재생에너지의 종류에는 태양광, 풍력, 수력, 연료전지 등의 다양한 분야가 있지만 우리가 사용하고 있는 수송용 연료를 대체할 에너지는 바이오 오일이다. 미국과 브라질, 중국 등의 식량 부국에서는 옥수수, 사탕수수 등의 식량을 화학적 처리과정을 거쳐 바이오 연료로 생산하고 있다. 하지만 식량자원 빈국에 대한 도덕적 문제를 야기하였고 폐셀룰로오스를 이용한 바이오연료 생산이 각광받고 활발하게 연구가 진행 중이다. 바이오오일을 만드는 방법은 여러 가지가 있으나 열분해를 통한 바이오오일 생산이 간단한 과정이고 시간이 오래 걸리지 않으며 많은 양을 만들어 낼 수 있는 장점을 가지고 있다. 본 연구에서는 주변에서 쉽게 볼 수 있는 폐셀룰로오스의 하나인 톱밥을 이용하여 열분해를 진행하였고 수분의 제거를 위해 톱밥은 오븐에서 75℃로 하루 이상 건조하였다. 화학적 처리가 되지 않은 톱밥을 이용하였고 반응 온도를 400, 450, 500, 550℃로 달리하여 실험을 진행하였다. Carrier gas는 N₂를 사용하였고 150cc/min의 유량으로 흘려주어 가스가 컨덴서로 이동하게 하였다. 열분해하여 나오는 생성물을 성상별로 분류하여 액체 물질이 어느 온도 조건에서 많이 나오는지 비교하였다. 분석방법은 바이오오일을 GC(Gas Chromatography)와 Elemental analyzer로 분석하였고 어느 온도 조건에서 탄화수소와 유가물질들이 많이 나오는 지 분석하였다.