검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2020.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        SiC is a material with excellent strength, heat resistance, and corrosion resistance. It is generally used as a material for SiC invertors, semiconductor susceptors, edge rings, MOCVD susceptors, and mechanical bearings. Recently, SiC single crystals for LED are expected to be a new market application. In addition, SiC is also used as a heating element applied directly to electrical energy. Research in this study has focused on the manufacture of heating elements that can raise the temperature in a short time by irradiating SiC-I2 with microwaves with polarization difference, instead of applying electric energy directly to increase the convenience and efficiency. In this experiment, Polydimethylsilane (PDMS) with 1,2 wt% of iodine is synthesized under high temperature and pressure using an autoclave. The synthesized Polycarbosilane (PCS) is heat treated in an argon gas atmosphere after curing process. The experimental results obtain resonance peaks using FT-IR and UV-Visible, and the crystal structure is measured by XRD. Also, the heat-generating characteristics are determined in the frequency band of 2.45 GHz after heat treatment in an air atmosphere furnace.
        4,000원
        2.
        2014.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        It is known that bones get damaged by accidents and aging. Since the discovery of Bioglass, various kinds of ceramics have been also found to bond to living bone; some of these ceramics are already being clinically used as bone-repairing materials. In the present study, antibacterial calcium silicate gel (Ag-30CaO·70SiO2 gel) was prepared by sol-gel method in order to control the microstructure, which is related to the dissolution rate and induction period of apatite formation in body environment. In addition, biological Ag-30CaO·70SiO2 is tested. This was done to impart antimicrobial activity to the 30CaO·70SiO2. Ag ion was added during sol-gel synthesis to replace the H2O added during the making of the 30CaO·70SiO2 gel, which has silver solutions of various concentration. After the sol-gel process, 1N-HNO3 solution was used to wash the gel when synthesizing the gel, in order to maintain the porous structure and remove PEG, water soluble polymers. Then, the apatite forming ability of the sol-gel derived CaO-SiO2 gels was investigated using simulated body fluid (SBF), which had almost the same ion concentration as that of human blood plasma. The gels were analyzed by FT-IR spectroscopy, SEM observation, XRD, and fluorescent microscopy. The apatite was successfully created even after washing the gel; apatite is present in an amorphous state, and was found to affect the concentration of the Ag ion in cells in MC3T3 live & dead assay results. From these results, it is suggested that a good material that can be used to repair defects of nature bone is Ag-30CaO·70SiO2 gel.
        4,000원
        3.
        2010.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, partially stabilized zirconia was synthesized using a chemical Y2O3 stabilizer and hydrothermal method. First, YCl3-6H2O and ZrCl2O-8H2O was dissolved in distilled water. Y-TZP (a Y2O3-doped toughened zirconia polycrystalline precursor) was also prepared by conventional co-precipitates in the presence of an excess amount of NH4OH solution under a fixed pH of 12. The Y-TZP precursors were filtered and repeatedly washed with distilled water to remove Cl- ions. ZrO2-Xmol%Y2O3 powder was synthesized by a hydrothermal method using Teflon Vessels at 180˚C for 6 h of optimized condition. The powder added with the Xmol%- Y2O3 (X = 0,1,3,5 mol%) stabilizer of the ZrO2 was synthesized. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens of 33mm×8mm×3 mm for three-point bend tests were used in the mechanical properties evaluation. A teragonal phase was observed in the samples, which contains more than 3 mol% Y2O3. The 3Y-ZrO2 agglomerated particle size was measured at 7.01μm. The agglomerated particle was clearly observed in the sample of 5 mol % Y2O3-ZrO2, and and the agglomerated particle size was measured at 16.4 um. However, a 20 nm particle was specifically observed by FE-SEM in the sample of 3 mol% Y2O3-ZrO2. The highest bending fracture strength was measured as 321.3 MPa in sample of 3 mol% Y2O3-ZrO2.
        4,000원
        4.
        2009.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The friction characteristics of automotive brake friction materials that contained different ceramic content were investigated. Several kinds of raw materials, such as resin-based binder, reinforcing fiber, friction restraint, abrasive, and filling materials were mixed, pressed, and heated in order to make the brake friction materials. The contents of SiC and BaSO4 changed from 5 vol% to 20 vol%, respectively. In addition to this, the content of Al2O3 adjusted from 1 vol% to 16 vol%. The surface morphology of the SiC containing sample appeared rough while more debris was observed when the contents of SiC increased. This implies that the SiC containing brake composite was not adequate for the automobile. However, the relatively smooth surface was observed in samples that contained the Al2O3. But the roughness was low with a content of 11 vol% Al2O3 compared to the other samples. This is consistent with the abrasive properties of the samples. In the case of BaSO4 containing samples, the smoothes surface was observed in the contents of 15 vol% BaSO4. Thus, it was concluded that the 11 vol% Al2O3 and 15 vol% BaSO4 containing composite would be the optimum content for the brake composite. Similar to the results of the surface morphology, the abrasion resistance consistently decreased when the content of SiC increased. On the contrary, the sample that contained 11 vol% Al2O3 and 15 vol% BaSO4 showed the highest abrasion resistance compared to the other samples.
        3,000원