검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2015.01 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper proposes a novel way of fabricating aligned porous Sn by freeze-drying of camphene slurry with stannic oxide (SnO2) coated Sn powders. The SnO2 coated Sn powders were prepared by surface oxidation of the initial and ball-milled Sn powders, as well as heat treatment of tin chloride coated Cu powders. Camphene slurries with 10 vol% solid powders were prepared by mixing at 50 oC with a small amount of oligomeric polyester dispersant. Freezing the slurry was done in a Teflon cylinder attached to a copper bottom plate cooled at −25 oC. Improved dispersion stability of camphene slurry and the homogeneous frozen body was achieved using the oxidized Sn powder at 670 oC in air after ball milling. The porous Sn specimen, prepared by freeze-drying of the camphene slurry with oxidized Sn powder from the heat-treated Sn/tin chloride mixture and sintering at 1100 oC for 1 h in a hydrogen atmosphere, showed large pores of about 200 μm, which were aligned parallel to the camphene growth direction, and small pores in their internal walls. However, 100 μm spherical particles were observed in the bottom part of the specimen due to the melting of the Sn powder during sintering of the green compact.
        4,000원
        2.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study reports a simple way of fabricating the porous Cu with unidirectional pore channels by freezedrying camphene slurry with Cu oxide coated Cu powders. The coated powders were prepared by calcination of ball-milled powder mixture of Cu and Cu-nitrate. Improved dispersion stability of camphene slurry could be achieved usingthe Cu oxide coated Cu powders instead of pure Cu powders. Pores in the frozen specimen at -25oC were generated bysublimation of the camphene during drying in air, and the green bodies were sintered at 750oC for 1 h in H2 atmo-sphere. XRD analysis revealed that the coated layer of Cu oxide was completely converted to Cu phase without anyreaction phases by hydrogen heat treatment. The porous Cu specimen prepared from pure Cu powders showed partlylarge pores with unidirectional pore channels, but most of pores were randomly distributed. In contrast, large andaligned parallel pores to the camphene growth direction were clearly observed in the sample using Cu oxide coated Cupowders. Pore formation behavior depending on the initial powders was discussed based on the degree of powder rear-rangement and dispersion stability in slurry.
        4,000원