검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2010.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Recent high efficiency electronic devices have been found to have heat emission problems. As for LEDs, an excessive increase in the device temperature causes a drop of the luminous efficiency and circuit lifetime. Therefore, heat release in the limited space of such electronic parts is very important. This is a study of the possibility of using a coating of carbon materials as a solution for the thermal emission problem of electronic devices. Powdered carbon materials, cokes, carbon blacks, amorphous graphite, and natural flakes were coated with an organic binder on an aluminum sheet and the subsequent thermal emissivity was measured with an FT-IR spectrometer and was found to be in the range of 5~20 μm at 50˚C. The emissivity of the carbon materials coated on the aluminum sheet was shown to be over 0.8 and varied according to carbon type. The maximum thermal emissivity on the carbon black coated-aluminum surface was shown to be 0.877. The emissivity of the anodized aluminum sheets that were used as heat releasing materials of the electronic parts was reported to be in the range of 0.7~0.8. Therefore, the use of a coating of carbon material can be a potential solution that facillitates heat dissipation for electronic parts.
        4,000원
        2.
        2008.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Graphite for the nuclear reactor is used to the moderator, reflector and supporter in which fuel rod inside of nuclear reactor. Recently, there are many researches has been performed on the various characteristics of nuclear graphite, however most of them are restricted to the structural and the mechanical properties. Therefore we focused on the thermal property of nuclear graphite. This study investigated the thermal emissivity following the oxidation degree of nuclear graphite with IG-11 used as a sample. IG-11 was oxidized to 6% and 11% in air at 5 l/min at 600˚C. The porosity and thermal emissivity of the sample were measured using a mercury porosimeter and by an IR method, respectively. The thermal emissivity of an oxidized sample was measured at 100˚C, 200˚C, 300˚C, 400˚C and 500˚C. The porosity of the oxidized samples was found to increase as the oxidation degree increased. The thermal emissivity increased as the oxidation degree increased, and the thermal emissivity decreased as the measured temperature increased. It was confirmed that the thermal emissivity of oxidized IG-11 is correlated with the porosity of the sample.
        4,000원