검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2017.11 서비스 종료(열람 제한)
        범지구적인 산업활동으로 인하여 발생된 지구온난화에 대처하기 위하여, 기후변화협약 당사국총회에서는 신 기후변화체제 합의문인 파리 협정을 채택하였다. 이를 위해 대부분 국가가 다양한 에너지 정책을 펼치고 있으며, 우리나라는 2035년까지 신재생에너지 보급률 11 % 달성을 위하여 제4차 신재생에너지 기본계획을 수립, 발표하였다. 이러한 신재생에너지는 다양한 에너지원으로 구성되어 있으며, 이 중 폐기물 에너지화 기술로부터 생산된 폐기물에너지는 신재생에너지 보급량 중 63.5 %로 가장 높은 보급량을 차지하고 있다. 현재 폐기물의 효율적인 자원화 기술 중 하나인 고형연료(SRF, solid refuse fuel)를 이용한 발전 사업이 추진되고 있다. 국내에서 생산되는 SRF의 경우, 생활폐기물 속 재활용 자원을 최대한 회수함으로써 가연분 함량이 높아 대체 에너지로서의 가능성이 높게 평가받고 있으며, 본 연구에서는 경제성을 확보하기 위해 성형 SRF가 아닌 비성형 SRF를 사용하여 연구를 진행하였다. 또한, 열 회수 및 합성가스(H2+CO) 생산을 위해 가스화 공정을 적용해보았으며, 고정층 반응기인 down draft fixed bed와 유동층 반응기인 bubbling fluidized bed의 가스화 특성을 알아보고자 하였다. 이뿐만 아니라 가스화 공정의 주요 운전 요인 중 하나인 ER(Equivalent Ratio)에 따른 합성가스 조성, 가스 수율, 고 탄화수소 물질인 C2-C6의 함량, 합성가스의 저위발열량 그리고 가스화 효율의 가장 중요한 지표라 할 수 있는 냉가스 효율과 탄소 전환율을 통해 최적 조건을 도출하고자 하였다.
        2.
        2017.05 서비스 종료(열람 제한)
        최근 들어 화석연료 고갈 및 환경오염 등 다양한 이유로 인해 신재생 에너지 자원에 대한 관심이 증대되고 있으며 관련 연구의 분야도 다양해지고 있다. 국내 신재생 에너지 시장은 점차 증대될 전망이며, 이러한 신재생 에너지는 바이오매스, 폐기물, 태양광, 수력 등 다양한 에너지 자원을 지칭하며 본 연구에서는 폐기물을 이용하여 신재생 에너지 자원 활용을 하고자 한다. 폐기물은 다양한 기술을 통해 활용이 가능하며 국내 폐기물의 경우 종량제 실시 등 법적 제도 덕분에 타 국가에 비하여 재활용률이 높으며 이러한 특성은 폐기물이 신재생 에너지 자원으로 사용되는데 큰 장점으로 나타난다. 최근 들어 주목받고 있는 기술인 Solid Refuse Fuel (SRF) 기술은 파쇄, 선별, 건조 공정을 거쳐 가연분 함량을 높여 열처리 시설에 연료로 사용할 수 있게끔 하는 기술로 이전에는 성형 SRF가 이송 및 투입의 이점에 의해 주목 받았으나 최근 들어 경제적 측면을 고려하여 비성형 SRF가 각광받고 있는 실정이다. 따라서 본 연구에서는 이러한 비성형 SRF를 시료로 하여 8 ton/day 규모의 pilot급 가스화 시스템에 적용하였으며, 가스화 공정 중 발생하는 다양한 가스상 오염 물질에 대한 배출 특성을 파악하고자 하였다. 이 뿐만 아니라 일반적인 가스화 특성 지표로 알려진 냉가스 효율, 탄소 전환율, 합성가스 조성 파악 등에 대하여 결과 값을 정리하였다. 가스상 오염물질은 질소 화합물(HCN, NH3), 염소 화합물(HCl), 황 화합물(H2S)을 선정하여 분석을 진행하였으며, 습식 정제 시스템인 스크러버 및 습식 전기 집진기를 통과한 후 배출 허용기준을 만족하는 것으로 나타났다.
        3.
        2017.05 서비스 종료(열람 제한)
        폐기물로부터 에너지를 회수하고자 하는 노력은 전세계적인 추세이며, 국내에서도 가연성 폐자원의 효율적인 친환경적 처리, 에너지 회수를 위한 다양한 정책과 법규가 만들어져 진행되고 있다. 가연성 폐기물로부터 에너지를 회수하는 전통적인 방법인 소각과 비교하여 가스화 기술은 생산된 합성가스를 다양한 방법으로 활용할 수 있다는 장점을 보유하고 있다. 합성가스가 가지고 있는 화학적 에너지를 활용하여 직접 엔진을 가동할 수 있으며, 가스화 방식에 따라 합성가스 내에 포함된 수소, 일산화탄소 등의 성분을 화학반응의 원료로 사용할 수도 있다. 따라서, 국내에서도 폐기물로부터 얻어진 합성가스를 다양한 방법으로 활용하기 위한 많은 연구들이 진행중에 있다. 본 연구에서는 국내 지자체에서 발생되는 생활폐기물의 비성형고형연료화 및 가스화 발전 기술을 적용하여 폐기물이 갖는 에너지를 회수하고자 비성형고형연료 8톤/일 규모의 하향식 고정층 가스화로와 세정설비, 가스엔진 발전을 통해 약 250kW이상의 전력을 생산하는 시스템을 설치 및 운영하였으며, 실증설비의 설계를 위한 다양한 인자에서의 결과를 알아보았다. 가스화 특성에 따른 발전 효율을 토대로 가스화 기술의 경제성을 평가함에 따라 상용공정으로의 적용 가능성을 확인할 수 있었다.
        4.
        2016.11 서비스 종료(열람 제한)
        기후변화가 가속되는 현 상황에서 신재생에너지의 적극적 활용은 전세계적인 추세이며, 국내에서도 가연성 폐자원의 효율적인 친환경적 처리, 에너지 회수를 위한 다양한 연구가 진행되고 있으며, 관련정책과 법규가 만들어져 있다. 가연성 폐기물로부터 에너지를 회수할 수 있는 가스화 기술은 생산된 합성가스를 다양한 방법으로 활용할 수 있다. 합성가스가 가지고 있는 화학적 에너지를 활용하여 직접 엔진을 가동할 수 있으며, 가스화 방식에 따라 합성가스 내에 포함된 수소, 일산화탄소 등의 성분을 화학반응의 원료로 사용할 수도 있다. 따라서, 국내에서도 폐기물로부터 얻어진 합성가스를 다양한 방법으로 활용하기 위한 많은 연구들이 진행중에 있다. 본 연구에서는 폐기물 고형연료 가스화 플랜트 기술의 개발을 위해 생활폐기물을 대상으로 비성형 고형연료를 제조하고, 제조된 고형연료를 파일럿 규모의 고정층 가스화를 통해 합성가스를 생산하여 이를 직접 가스엔진 발전기에 도입함에 있어서, 고정층 반응기에서 발생되는 합성가스의 생산특성에 대해 알아보고자 한다.
        5.
        2016.11 서비스 종료(열람 제한)
        신재생에너지의 적극적 활용은 전세계적인 추세이며, 국내에서도 가연성 폐자원의 효율적인 친환경적 처리, 에너지 회수를 위한 다양한 정책과 법규가 만들어져 진행되고 있다. 가연성 폐기물로부터 에너지를 회수하는 전통적인 방법인 소각과 비교하여 가스화 기술은 생산된 합성가스를 다양한 방법으로 활용할 수 있으며, 100톤미만의 폐기물 처리시 소각보다 월등히 높은 효율을 보이고 있다. 따라서 사용연한이 도래하는 국내 중소규모 소각시설의 대체 및 플랜트의 해외 수출 등을 위해 폐기물 고형연료의 가스화 기술의 개발이 진행중이다. 본 연구에서는 이러한 폐기물 고형연료 가스화 플랜트 기술의 개발을 위해 생활폐기물을 대상으로 비성형 고형연료를 제조하고, 제조된 고형연료를 공기사용 고정층 가스화를 통해 합성가스를 생산하여 이를 직접 가스엔진 발전기에 도입함으로써 일정량의 전력을 생산하는 경우 가스엔진 발전기의 운전 특성에 대해 연구하였다. 가스엔진 발전기의 운전에서 중요한 운전인자는 무엇인지 확인하고, 이를 통해 안정적인 가스화 엔진발전을 위한 개선사항에 대해 알아보고자 하였다.
        6.
        2016.11 서비스 종료(열람 제한)
        폐기물로부터 에너지를 회수하고자 하는 노력은 전세계적인 추세이며, 국내에서도 가연성 폐자원의 효율적인 친환경적 처리, 에너지 회수를 위한 다양한 정책과 법규가 만들어져 진행되고 있다. 가연성 폐기물로부터 에너지를 회수하는 전통적인 방법인 소각과 비교하여 가스화 기술은 생산된 합성가스를 다양한 방법으로 활용할 수 있으며, 100톤 미만의 폐기물 처리시 소각보다 월등히 높은 효율을 보이고 있다. 따라서 사용연한이 다 되어가는 국내 중소규모 소각시설의 대체 및 플랜트의 해외 수출 등을 위해 폐기물 고형연료의 가스화 기술의 개발이 진행중이다. 본 연구에서는 이러한 폐기물 고형연료 가스화 플랜트 기술의 개발을 위해 국내 한 지자체의 생활폐기물을 대상으로 비성형 고형연료를 제조하고, 제조된 고형연료를 공기사용 고정층 가스화를 통해 합성가스를 생산하여 이를 직접 가스엔진 발전기에 도입함으로써 일정량의 전력을 생산할 수 있는 반응 특성에 대해 연구하였다. 실험 설비와는 다르게 파일럿 플랜트 이상의 실증시설은 강제로 온도를 유지할 수 없으므로, 공급하는 산화제에 의해 로내 온도가 변화되며, 최적 가스화 효율을 얻기위해 다양한 운전인자의 변화에 따른 가스화 특성에 대해 평가하였다.
        7.
        2015.11 서비스 종료(열람 제한)
        3 kg/hr급 소용량 down draft 방식의 고정층 가스화기에서의 산화제 공급방식에 따른 비성형 고형연료(SRF, Solid Refuse Fuel)의 공기가스화 특성을 파악하였다. 공기단독, 공기와 스팀 혼합 및 산소부화 세 조건에서의 산화제 종류에 따른 가스화 특성과 공기를 산화제로 하여 산화제 주입 위치에 따른 가스화 특성을 살펴보았다. 가스화 특성을 살펴보기 위한 지표로 합성가스 조성, 합성가스 발열량, 냉가스효율 및 탄소전환율을 산정하여 사용하였다. 산소부하 가스화의 경우 주입되는 산소량은 동일하고 상대적으로 질소량이 감소하기 때문에 합성가스에 포함된 질소함량의 감소로 합성가스 발열량은 증가하게 된다. 그리고 스팀을 혼합하여 사용할 경우 주입된 스팀과 탄화수소 가스의 수증기 개질반응(CnHm + H2O → H2 + CO)에 의해서 H2와 CO농도가 증가하고 합성가스 발열량도 증가하게 된다. 또한 탄화수소 계열인 타르와 반응함으로써 타르 제거 효과를 가지는 것으로 보고된다. 또한 보조산화제를 적절하게 사용할 경우 합성가스 품질을 유지한 상태에서 로내 타르 제거효과가 있는 것으로 보고된다. 공기가스화와 비교하여 산소부화 조건의 경우 합성가스 발열량은 증가되었지만 냉가스효율 및 탄소전환율은 감소된 결과를 보였다. 보조산화제를 사용한 경우 합성가스 유량과 H2, CH4, CO를 포함하는 가연성가스의 농도가 증가하였고 이로 인해 냉가스효율과 탄소전환율도 증가하는 결과를 보였다.