검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we investigated the effects of diesel-palm oil biodiesel-ethanol blends on combustion and emission characteristics in a 4-cylinder common rail direct injection (CRDI) diesel engine at low idling operations. The engine speed and engine load was 750 rpm and 40 Nm, while the main and pilot injection timing was respectively fixed at 2 °CA before top dead center (BTDC) and 20 °CA BTDC. The experimental results showed that the cylinder pressure increased with the increasing of palm oil biodiesel ratio from 20% to 100%. In addition, the peak value of cylinder pressure increased by 4.35% compared with pure diesel fuel when 5 vol.% ethanol oil added to diesel oil. Because the palm oil biodiesel and ethanol are the oxygenated fuel, the oxygen content played an important role in improving combustion. Based on the high oxygen content of biodiesel and ethanol, their mixing with diesel fuel effectively reduced PM emissions but increased NOx slightly, while CO and HC had no significant changes.
        4,000원
        2.
        2020.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, the effect of various pilot injection timings on combustion and emission characteristics were investigated in a common-rail direct injection (CRDI) diesle engine fueled with diesel-ethanol blends. The engine speed and engine load were controlled at constant 1500rpm and 70Nm, respectively. The tested fuels were DE0 (pure diesel fuel), DE5 (5 vol.% ethanol blended with 95 vol.% diesel oil), DE10 (10 vol.% ethanol blended with 90 vol.% diesel oil) and DE15 (15 vol.% ethanol blended with 85 vol.% diesel oil). The main injection timing was fixed at 0°CA TDC (top dead center), while various pilot injection timings including 25°CA BTDC (before top dead center), 20°CA BTDC and 10°CA BTDC were selected as the experimental variable. The experimental results showed that various pilot injection timings had little effect on the peak value of cylinder pressure, but had great influence on the start of combustion. The peak value of heat release rate (HHR) increased with the increase of ethanol content. However, the peak value of HRR reduced as the pilot injection is delayed. The diesel fuel containing 10% ethanol had a highest peak value of combustion pressure compared with the others, while the pilot injection timing occurred at 25°CA BTDC. On the other hand, the exhaust emissions of DE10 was also the lowest compared with the others. In addition, with the increase of ethanol content in diesel the PM and NOx emissions reduced.
        4,000원
        6.
        2015.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was performed to investigate the effect of fuel combustion enhancing apparatus(FCEA) for ionization of intaking air into cylinder combustion chamber on the combustion performance and emissions characteristics in a 4-cylinder common-rail direct injection diesel engine. The experiments were applied to the engine at an engine speed of 1,500rpm under 20Nm, 40Nm, 60Nm and 80Nm conditions. The test results were compared to each other with or without the FCEA. In the case of the FCEA, the combustion pressure, peak combustion pressure and rate of heat release were increased slightly and the brake specific fuel consumption(BSFC) was decreased slightly when compared to that without the FCEA under all loads at an engine speed of 1,500rpm. However, in the case of the FCEA, the nitrogen oxide(NOx) were increased slightly, the carbon monoxide(CO) and particulate matter(PM) were decreased slightly when compared to that without the FCEA under all loads at an engine speed of 1,500rpm.
        4,000원