검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2013.11 서비스 종료(열람 제한)
        화력발전소에서 석탄을 이용하여 에너지를 생산하는 연소방식에는 크게 미분탄 연소방식과 순환 유동층 연소방식으로 구분된다. 순환 유동층 연소방식은 기존 연소로에는 적합하지 않은 고유황탄, 저품위탄, 폐기물 등 모든 가연성 물질에 대하여 광범위한 원료 사용이 가능하다. 또한, 질소산화물의 배출을 억제하기 위해 연소로 온도를 약 900℃ 정도로 유지하고 암모니아를 분무하며, 석탄과 석회석을 혼소하여 노(盧) 내에서 직접 탈황을 실시하는 등의 공정관리를 실시하고 있다. 이러한 순환 유동층 연소방식의 석탄재(이하 CFBC-FA)는 화학적 특성이 미분탄 연소방식의 F급 석탄재와는 달리 CaO 화합물이 다량 함유되어 있어 콘크리트 혼화재로 사용할 경우 Free CaO 성분이 콘크리트의 이상 응결현상, 슬럼프의 손실, 지연제의 사용량 증가, 내구성 저하 등의 문제를 발생시키고, 특히 콘크리트의 팽창, 균열 등의 문제를 발생하여 물성을 저하시키는 것으로 알려져 있으며, 전량 매립처리 되고 있어 재활용 방안이 요구되고 있다. 본 연구에서는 CFBC-FA를 건설재료(콘크리트 구조물 적용 제외)로 활용하기 위해 CFBC-FA의 물리․화학적 특성 분석을 실시하였으며, 고로슬래그와 CFBC-FA를 활용한 무기결합재 물성평가를 실시하였다. 본 실험에 사용한 CFBC-FA는 미분탄 연소방식의 석탄재와는 달리 CaO 함량 32.4%, SO₃ 함량 8.4%로 높았으며, SiO₂ 30.5%, Al₂O₃ 15.9%로 구성되어 있음을 확인하였다. Free CaO 함량은 17.3%, 비중은 2.8, 강열감량은 3.4%, pH는 12.4, 평균입경은 7.23 ㎛로 측정되었으며, 입형은 미분탄 연소방식의 석탄재와 같은 구형이 아닌 부정형임을 확인하였다. 이러한 물성을 지닌 CFBC-FA를 개질처리하여 제조한 결합재의 수화열, 유동성, 강도 측정을 실시하였다. 개질처리한 CFBC-FA의 혼입량이 증가할수록 유동성은 감소하는 경향을 나타내었으며, 수화열은 높아지는 경향을 보였다. 수화열의 발열성상은 보통포틀랜드 시멘트 및 슬래그시멘트와 달리 가수 후 2시간 이내에 최고 온도에 도달하고 있음을 확인하였다. 개질처리한 CFBC-FA와 고로슬래그의 혼합비율이 55:45인 결합재와 슬래그 시멘트의 재령7일 압축강도는 각각 12.7 MPa, 17.6 MPa였으며, 28일 압축강도는 30.0 MPa, 29.8 MPa 로 측정되었다.
        2.
        2013.11 서비스 종료(열람 제한)
        하수슬러지 자원화 처리 방안 중 하나인 고화처리는 시멘트 및 생석회 등의 무기계 재료를 고화공정의 첨가제로 사용하여 하수슬러지를 고화시켜 인공토양을 제조하는 기술로, 다른 자원화 방법과 비교하여 에너지 사용량이 적은 공법으로 재자원화율이 가장 높은 육상처리 방법이라 말할 수 있다. 환경부 국가환경기술정보센터의 자료에 따르면 2012년 4월 현재 국내 운영 중인 총 89개의 하수슬러지 처리시설 중 고화처리 시설은 12개소이며, 처리 가능 시설 용량은 2,668톤/일으로 전체 시설의 약 30%를 차지하고 있다. 본 연구에서는 슬래그 활성화 메커니즘을 기반으로 하고 자극제로 고칼슘 플라이애시인 열병합발전소 소각재와 제지슬러지 소각재를 활용하여 제조한 하수슬러지 고화재 CMD-SOIL 1000 (형원길 외, 폐기물학회 2012)을 국내 4곳의 하수슬러지 자원화 시설에 적용하여 설비 운용성을 평가하고, 최종 배출 고화물을 매립지의 복토재로 재이용하기 위해 관련 규정에 의거한 적합성을 평가하였다. 평가 결과 자원화 시설에서 설비 가동성과 관련하여 요구하는 항목인 고화재 이송 여부, 시간당 혼합 배치 수 및 배출량 그리고 하수슬러지 중량에 대한 고화재 적정 혼합비율을 모두 만족시키는 것을 확인할 수 있었다. 또한 유기성 오니를 고화하여 생산한 고화처리물을 매립시설의 복토재로 재활용하기 위한 규정인 ‘폐기물관리법 시행규칙 별표 5의 2’ 에서 정한 수소이온농도 12.4 이하, 수분함량 50% 이하, 투수계수 1.0×10-7cm/sec 이상 1.0×10-3cm/sec 이하, 일축압축강도 0.10MPa 이상 그리고 유해물질 함량 기준인 ‘토양환경보전법 시행규칙 제1조 5’ 에 따른 토양오염우려기준 중 2지역 이내인 기준치를 모두 만족하여, CMD-SOIL 1000은 기존 국내 하수슬러지 자원화 설비에 적합한 하수슬러지 고화재인 것으로 판단되었다.
        3.
        2013.11 서비스 종료(열람 제한)
        하수슬러지 자원화 처리 방안은 소각, 건조, 탄화, 용융, 고화, 연료화, 퇴비화 등이 제안되고 있다. 그 중 고화처리는 다른 공법에 비해 건설비 절감, 처리공정 단순, 환경영향이 적다는 특징을 가지고 있다.하수슬러지의 고화처리 시 고화재 투입으로 인한 건조 중량 증가가 단점으로 언급되고 있으나, 하수슬러지를 이용하여 제조한 인공토양은 흙을 대체할 건설재료로 활용이 가능하여 천연토사의 절감과 인공토양의 판매로 인한 경제적인 장점을 지니고 있다. 본 연구에서는 슬래그 활성화 메커니즘을 기반으로 하고 자극제로 고칼슘 플라이애시를 활용하여 제조한 하수슬러지 고화재 CMD-SOIL 1000(형원길 외, 폐기물학회 2012)을 국내 하수슬러지 자원화 설비에 적용하여 배출된 고화물의 유효 자원으로써의 재활용 가능성을 평가하고자 하였다. 상기 고화물의 매립시설 복토재로 품질 적합성(폐기물관리법 시행규칙)을 선행 연구결과 확인할 수 있었으며, 다짐시험을 실시한 결과 연약지반 판정기준의 사질지반 기준(도로설계 편람, 2000)을 상회하는 값인 최적 함수비 49.1%와 최대 건조밀도 1.06g/cm²를 나타내어 지반침하에 대한 안정성 확보가 가능한 것으로 판단되었다. 또한 고화물과 자연 상태의 토사를 일정한 비율로 혼합한 토양에 페레니얼 그라이스를 파종하여 생육 특성을 살핀 결과, 발아초기에는 자연 상태의 토사의 비율이 높을수록 개체수가 많고 성장속도의 차이가 있었으나 재령이 지날수록 육안으로 관찰되는 차이가 없었으며, 파종 56일 이후에는 자연 상태의 토사만을 활용한 경우와 동일한 생육 상황이 관찰되었다. 따라서 고칼슘 플라이애시를 적용한 하수슬러지 고화물은 매립지 복토재 외에도 토지개량제 및 기반 성토재 등의 용도로 활용이 가능한 것으로 판단되었다.