검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        2.
        2019.06 KCI 등재 서비스 종료(열람 제한)
        In this paper, we present auto-annotation tool and synthetic dataset using 3D CAD model for deep learning based object detection. To be used as training data for deep learning methods, class, segmentation, bounding-box, contour, and pose annotations of the object are needed. We propose an automated annotation tool and synthetic image generation. Our resulting synthetic dataset reflects occlusion between objects and applicable for both underwater and in-air environments. To verify our synthetic dataset, we use MASK R-CNN as a state-of-the-art method among object detection model using deep learning. For experiment, we make the experimental environment reflecting the actual underwater environment. We show that object detection model trained via our dataset show significantly accurate results and robustness for the underwater environment. Lastly, we verify that our synthetic dataset is suitable for deep learning model for the underwater environments.
        3.
        2012.02 KCI 등재 서비스 종료(열람 제한)
        The present study investigated an ethanol extract of Chaenomeles sinensis fruit (CSF) for possible neuroprotective effects on neurotoxicity induced by amyloid β protein (Aβ) (25-35) in cultured rat cortical neurons and also for antidementia activity in mice. Exposure of cultured cortical neurons to 10μM Aβ (25-35) for 36 h induced neuronal apoptotic death. At 0.1-10μg/ml, CSF inhibited neuronal death, elevation of intracellular calcium concentration ([Ca2+]i), and generation of reactive oxygen species (ROS) induced by Aβ (25-35) in primary cultures of rat cortical neurons. Memory loss induced by intracerebroventricular injection of mice with 15 nmol Aβ (25-35) was inhibited by chronic treatment with CSF (10, 25 and 50 mg/kg, p.o. for 7 days) as measured by a passive avoidance test. CSF (50 mg/kg) inhibited the increase of cholinesterase activity in Aβ (25-35)-injected mice brain. From these results, we suggest that the antidementia effect of CSF is due to its neuroprotective effect against Aβ (25-35)-induced neurotoxicity and that CSF may have a therapeutic role for preventing the progression of Alzheimer's disease.