검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2018.07 KCI 등재 서비스 종료(열람 제한)
        Renewable energy resources from foodwaste have attracted significant interest and, consequently, many alternatives are considered for large-scale biogas treatment processes and small-scale onsite drying processes (heat source: electricity, gas, and dried foodwaste by-product). The pre-treatment process for foodwaste consists of the following sequential steps: collection, transportation, shredding, segregation, and dehydration. After this pre-treatment, the dried foodwaste by-product is recycled into (among others) animal feed, fertilizer/compost or biomass solid fuel. In addition, the leachate?liquid generated by squeezing the foodwaste is used for bio-gasification, achieved through an Anaerobic Digestion (AD) process associated with a sewage co-digestion treatment. In this study, the operation cost and greenhouse gas (GHG) emissions of an improved and simplified small-scale onsite drying treatment are compared with those of a large-scale biogas treatment. The pre-treatment can be improved and simplified via this drying treatment. Through this treatment, operationcost reductions of 45.4%, 50.5%, and 89.6% are achieved when electricity, liquified natural gas (LNG), and biomass solid fuel (dried foodwaste by-product), respectively, are employed as drying heat sources. Furthermore, if the annual amount of foodwaste (5 million ton) is recycled into biomass solid fuel, then significant reductions (7.5 million tCO2-e per annum) in GHG emissions can be realized. Therefore, this study demonstrates that improvement and simplification of the smallscale drying process (i) reduces the operation cost as well as GHG emission levels (to levels lower than those achieved via the large-scale biogas treatment process) and (ii) offers a practical solution for foodwaste treatment and a renewable energy resource.
        2.
        2017.11 서비스 종료(열람 제한)
        2014년 기준 13,698톤/일의 음식물쓰레기 발생량 중 공동주택과 감량의무사업장이 차지하는 비율은 각각 38%, 30%이고 계절평균 음식물쓰레기 함수율은 각각 81.5%, 76.2%로 높아 수증기로 증발시키는 건조공정에서의 열원소요비용을 높이는 원인이 된다. 건조 에너지의 주요 공급열원으로는 전기, 가스 및 기름 등의 화석연료이며, 이 중 전기 열원 사용이 가장 간편하고 적용성이 우수하지만 가스 열원에 비해 온실가스 배출량은 단위열량당 2.3배로 상대적으로 높다. 그리고 기름(Light oil, Heavy oil) 열원의 경우 연소 후 연관에 Soot와 같은 입자상물질의 누적에 의한 열전달속도 감소로 열회수 효율을 저감시킨다. 가스(LNG) 열원의 경우 가스유입 배관, 가스보일러 및 연소실이 추가로 필요하지만 연소 시 매연이나 미세분진 발생량이 적고, 일산화탄소와 질소산화물 배출량이 적고, 오존을 생성하는 탄화수소 배출량이 적고, 천연가스 정제비용이 낮고, 누설 시 공기보다 가벼워 대기 중으로 쉽게 확산되어 안전성이 높은 장점과 천연가스액화기술 발전으로 운송과 보관이 용이할 뿐만 아니라 전 세계적으로 약 100년 이상 사용 가능할 정도로 매장량이 풍부하다. 반면 가스 열원을 건조공정에 사용할 경우 연소 후 폐열의 대기 배출로 열회수 효율을 감소시켜 가스소비량 증가에 의한 운영비용 상승의 단점이 있다. 이를 보완하기 위해서는 기존의 단순 시간종료에서 최종부산물의 목표함수율에 도달할 경우 건조공정 자동종료로 가스소비량을 최소화 할 수 있는 방안도 적절한 대안이 될 수 있다. 건조공정 종료시간 자동화를 위해서는 제어시스템을 개발해야 하며, 종료시점은 폐쇄회로(Closed-loop recirculation system) 건조공정에서 수증기 배출량이 가장 높은 열교환기의 유입과 배출 온도차(⊿T)와 건조기의 배출과 유입 온도차(⊿T)로 설정이 가능하다. 이 중 열교환기 유입, 배출온도 변화가 짧은 시간에 크게 변화함에 따라 종료시점 범위 설정이 용이하지 않음에 비해 건조기 배출, 유입온도 변화는 상대적으로 안정적인 변화폭인 것으로 나타났다. 따라서 본 연구에서는 최종부산물의 목표함수율에 근접할 수 있는 건조 공정을 모니터링하여 적절한 운전종료시점을 설정할 수 있는 방안을 제시하기 위해 건조기 배출, 유입 온도차(⊿T)를 적용하였다.